Department of Bioengineering, Stanford University, Stanford, California, USA.
Department of Chemical Engineering, Stanford University and HHMI, Stanford, California, USA.
Appl Environ Microbiol. 2021 Jun 25;87(14):e0058221. doi: 10.1128/AEM.00582-21.
Nitrogen requirements for modern agriculture far exceed the levels of bioavailable nitrogen in most arable soils. As a result, the addition of nitrogen fertilizer is necessary to sustain productivity and yields, especially for cereal crops, the planet's major calorie suppliers. Given the unsustainability of industrial fertilizer production and application, engineering biological nitrogen fixation directly at the roots of plants has been a grand challenge for biotechnology. Here, we designed and tested a potentially broadly applicable metabolic engineering strategy for the overproduction of ammonia in the diazotrophic symbiont Azospirillum brasilense. Our approach is based on an engineered unidirectional adenylyltransferase (uAT) that posttranslationally modifies and deactivates glutamine synthetase (GS), a key regulator of nitrogen metabolism in the cell. We show that this circuit can be controlled inducibly, and we leveraged the inherent self-contained nature of our posttranslational approach to demonstrate that multicopy redundancy can improve strain evolutionary stability. uAT-engineered is capable of producing ammonia at rates of up to 500 μM h unit of OD (optical density at 600 nm). We demonstrated that when grown in coculture with the model monocot Setaria viridis, these strains increase the biomass and chlorophyll content of plants up to 54% and 71%, respectively, relative to the wild type (WT). Furthermore, we rigorously demonstrated direct transfer of atmospheric nitrogen to extracellular ammonia and then plant biomass using isotopic labeling: after 14 days of cocultivation with engineered uAT strains, 9% of chlorophyll nitrogen in seedlings was derived from diazotrophically fixed dinitrogen, whereas no nitrogen was incorporated in plants cocultivated with WT controls. This rational design for tunable ammonia overproduction is modular and flexible, and we envision that it could be deployable in a consortium of nitrogen-fixing symbiotic diazotrophs for plant fertilization. Nitrogen is the most limiting nutrient in modern agriculture. Free-living diazotrophs, such as , are common colonizers of cereal grasses and have the ability to fix nitrogen but natively do not release excess ammonia. Here, we used a rational engineering approach to generate ammonia-excreting strains of . Our design features posttranslational control of highly conserved central metabolism, enabling tunability and flexibility of circuit placement. We found that our strains promote the growth and health of the model grass and rigorously demonstrated that in comparison to WT controls, our engineered strains can transfer nitrogen from N gas to plant biomass. Unlike previously reported ammonia-producing mutants, our rationally designed approach easily lends itself to further engineering opportunities and has the potential to be broadly deployable.
现代农业对氮的需求远远超过大多数耕地土壤中生物可利用氮的水平。因此,为了维持生产力和产量,特别是为了维持谷类作物这一地球主要的卡路里供应作物的生产力和产量,必须添加氮肥。考虑到工业肥料生产和应用的不可持续性,直接在植物根部进行生物固氮工程一直是生物技术的一大挑战。在这里,我们设计并测试了一种在固氮共生菌 Azospirillum brasilense 中过量生产氨的潜在广泛适用的代谢工程策略。我们的方法基于一种经过工程改造的单向腺苷酰转移酶(uAT),它可以对谷氨酰胺合成酶(GS)进行翻译后修饰和失活,GS 是细胞中氮代谢的关键调节剂。我们表明,该电路可以进行诱导控制,并且我们利用我们的翻译后方法的固有自包含性质来证明多拷贝冗余可以提高菌株进化稳定性。uAT 工程菌株能够以高达 500μM h 的速率产生氨单位 OD(在 600nm 处的光密度)。我们表明,当与模式单子叶植物柳枝稷共培养时,这些菌株使植物的生物量和叶绿素含量分别增加了 54%和 71%,而野生型(WT)则没有。此外,我们使用同位素标记严格证明了大气氮直接转化为细胞外氨,然后转化为植物生物量:在与工程 uAT 菌株共培养 14 天后,WT 对照共培养的植物中,9%的叶绿素氮来自固氮作用固定的二氮,而植物中没有氮。这种用于可调节氨过量生产的合理设计是模块化和灵活的,我们设想它可以在固氮共生固氮菌的联合体中用于植物施肥。氮是现代农业中最受限制的营养物质。自由生活的固氮菌,如 ,是谷类草的常见定植者,具有固氮能力,但天然不会释放多余的氨。在这里,我们使用合理的工程方法来产生分泌氨的 菌株。我们的设计具有对高度保守的中心代谢物的翻译后控制,使电路放置的可调节性和灵活性成为可能。我们发现我们的菌株促进了模式草 的生长和健康,并严格证明与 WT 对照相比,我们的工程菌株可以将氮从 N 气体转移到植物生物量。与以前报道的产氨突变体不同,我们的合理设计方法易于进一步工程化,并具有广泛应用的潜力。