Beijing Advanced Innovation Center for Materials Genome Engineering, Institute of Advanced Materials and Technology , University of Science and Technology Beijing , Beijing 100083 , China.
Beijing Key Laboratory of Advanced Chemical Energy Storage Technologies and Materials , Research Institute of Chemical Defense , Beijing 100191 , China.
Nano Lett. 2019 Mar 13;19(3):1832-1837. doi: 10.1021/acs.nanolett.8b04919. Epub 2019 Jan 17.
It is imperative to explore practical methods and materials to drive the development of high energy density lithium metal batteries. The constuciton of nanostructure electrodes and surface engineering on the current collectors are the two most effective strategies to regulate the homogeneous Li plating/stripping to relieve the Li dendrites and infinite volume change problems. Based on the low stacking fault energy of the Cu-Zn alloy, we present a novel chemical energy release induced surface atom diffusion strategy, which is achieved by the negative Gibbs free energy from the surface oxidation reaction and subsequent replacement reaction under thermal treatment in air, to realize a uniform upper ZnO nanoparticles coating. Furthermore, we apply the modified brass mesh as a lithiophilic current collector to decrease the Li deposition nucleation overpotential and effectively restrain the Li dendrite growth. The modified brass current collector achieves a long-term cycling stability of 500 cycles at 2.0 mA cm. We have verified the effectiveness of our chemical energy release modification strategy on a 1 m brass mesh and other Cu alloy (Tin bronze mesh), which demonstrates its great opportunities for scalable and safe lithium metal batteries.
探索实用的方法和材料来推动高能量密度锂金属电池的发展势在必行。构建纳米结构电极和对集流器进行表面工程是调节均匀锂电镀/剥离以缓解锂枝晶和无限体积变化问题的两种最有效策略。基于铜锌合金的低层错能,我们提出了一种新的化学能量释放诱导表面原子扩散策略,该策略通过表面氧化反应的负吉布斯自由能以及随后在空气中热处理下的取代反应来实现,从而实现均匀的上氧化锌纳米粒子涂层。此外,我们将改性黄铜网用作亲锂集流器,以降低锂沉积成核过电位并有效抑制锂枝晶生长。改性黄铜集流器在 2.0 mA cm 下实现了 500 次循环的长期循环稳定性。我们已经在 1 m 黄铜网和其他铜合金(锡青铜网)上验证了我们的化学能量释放改性策略的有效性,这表明它在可扩展和安全的锂金属电池方面具有很大的应用潜力。