Yuan Huadong, Nai Jianwei, Tian He, Ju Zhijin, Zhang Wenkui, Liu Yujing, Tao Xinyong, Lou Xiong Wen David
College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China.
School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore.
Sci Adv. 2020 Mar 6;6(10):eaaz3112. doi: 10.1126/sciadv.aaz3112. eCollection 2020 Mar.
The lithium metal anode (LMA) is considered as a promising star for next-generation high-energy density batteries but is still hampered by the severe growth of uncontrollable lithium dendrites. Here, we design "spansules" made of NaMg(Mn)F@C core@shell microstructures as the matrix for the LMA, which can offer a long-lasting release of functional ions into the electrolyte. By the assistance of cryogenic transmission electron microscopy, we reveal that an in situ-formed metal layer and a unique LiF-involved bilayer structure on the Li/electrolyte interface would be beneficial for effectively suppressing the growth of lithium dendrites. As a result, the spansule-modified anode affords a high Coulombic efficiency of 98% for over 1000 cycles at a current density of 2 mA cm, which is the most stable LMA reported so far. When coupling this anode with the Li[NiCoMn]O cathode, the practical full cell further exhibits highly improved capacity retention after 500 cycles.
锂金属阳极(LMA)被认为是下一代高能量密度电池的一颗有前途的明星,但仍然受到不可控锂枝晶严重生长的阻碍。在此,我们设计了由NaMg(Mn)F@C核壳微结构制成的“微胶囊”作为LMA的基质,其可以向电解质中持久释放功能离子。借助低温透射电子显微镜,我们揭示了在Li/电解质界面上原位形成的金属层和独特的含LiF双层结构将有助于有效抑制锂枝晶的生长。结果,微胶囊修饰的阳极在2 mA cm的电流密度下超过1000次循环时提供了98%的高库仑效率,这是迄今为止报道的最稳定的LMA。当将这种阳极与Li[NiCoMn]O阴极耦合时,实际的全电池在500次循环后进一步表现出高度改善的容量保持率。