Suppr超能文献

用于评估化学物质内分泌干扰潜力的计算预测模型。

Computational prediction models for assessing endocrine disrupting potential of chemicals.

作者信息

Sakkiah Sugunadevi, Guo Wenjing, Pan Bohu, Kusko Rebecca, Tong Weida, Hong Huixiao

机构信息

a Division of Bioinformatics and Biostatistics , National Center for Toxicological Research, U.S. Food and Drug Administration , Jefferson , Arkansas , USA.

b Immuneering Corporation , Cambridge , Massachusetts , USA.

出版信息

J Environ Sci Health C Environ Carcinog Ecotoxicol Rev. 2018;36(4):192-218. doi: 10.1080/10590501.2018.1537132. Epub 2019 Jan 11.

Abstract

Endocrine disrupting chemicals (EDCs) mimic natural hormones and disrupt endocrine function. Humans and wildlife are exposed to EDCs might alter endocrine functions through various mechanisms and lead to an adverse effects. Hence, EDCs identification is important to protect the ecosystem and to promote the public health. Leveraging in-vitro and in-vivo experiments to identify potential EDCs is time consuming and expensive. Hence, quantitative structure-activity relationship is applied to screen the potential EDCs. Here, we summarize the predictive models developed using various algorithms to forecast the binding activity of chemicals to the estrogen and androgen receptors, alpha-fetoprotein, and sex hormone binding globulin.

摘要

内分泌干扰化学物质(EDCs)模仿天然激素并扰乱内分泌功能。人类和野生动物接触EDCs可能通过各种机制改变内分泌功能并导致不良影响。因此,识别EDCs对于保护生态系统和促进公众健康很重要。利用体外和体内实验来识别潜在的EDCs既耗时又昂贵。因此,应用定量构效关系来筛选潜在的EDCs。在此,我们总结了使用各种算法开发的预测模型,以预测化学物质与雌激素和雄激素受体、甲胎蛋白和性激素结合球蛋白的结合活性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验