Suppr超能文献

利用单细胞 RNA 测序数据将可变剪接与癌症异质性联系起来:一种计算方法。

Exploiting single-cell RNA sequencing data to link alternative splicing and cancer heterogeneity: A computational approach.

机构信息

High Performance Computing and Networking Institute, National Research Council, Italy.

High Performance Computing and Networking Institute, National Research Council, Italy.

出版信息

Int J Biochem Cell Biol. 2019 Mar;108:51-60. doi: 10.1016/j.biocel.2018.12.015. Epub 2019 Jan 8.

Abstract

Cell heterogeneity studies using single-cell sequencing are gaining great significance in the era of personalized medicine. In particular, characterization of tumor heterogeneity is an emergent issue to improve clinical oncology, since both inter- and intra-tumor level heterogeneity influence the utility and application of molecular classifications through specific biomarkers. Majority of studies have exploited gene expression to discriminate cell types. However, to provide a more nuanced view of the underlying differences, isoform expression and alternative splicing events have to be analyzed in detail. In this study, we utilize publicly available single cell and bulk RNA sequencing datasets of breast cancer cells from primary tumors and immortalized cell lines. Breast cancer is very heterogeneous with well defined molecular subtypes and was therefore chosen for this study. RNA-seq data were explored in terms of genes, isoforms abundance and splicing events. The study was conducted from an average based approach (gene level expression) to detailed and deeper ones (isoforms abundance/splicing events) to perform a comparative analysis, and, thus, highlight the importance of the splicing machinery in defining the tumor heterogeneity. Moreover, here we demonstrate how the investigation of gene isoforms expression can help to identify the appropriate in vitro models. We furthermore extracted marker isoforms, and alternatively spliced genes between and within the different single cell populations to improve the classification of the breast cancer subtypes.

摘要

单细胞测序的细胞异质性研究在个性化医学时代具有重要意义。特别是,肿瘤异质性的特征是提高临床肿瘤学的一个新兴问题,因为肿瘤内和肿瘤间的异质性通过特定的生物标志物影响分子分类的实用性和适用性。大多数研究都利用基因表达来区分细胞类型。然而,为了更细致地了解潜在差异,必须详细分析异构体表达和可变剪接事件。在这项研究中,我们利用了来自原发性肿瘤和永生化细胞系的乳腺癌细胞的公开可用的单细胞和批量 RNA 测序数据集。乳腺癌具有明确的分子亚型,非常具有异质性,因此选择了这项研究。RNA-seq 数据从基于平均值的方法(基因水平表达)到更详细和更深入的方法(异构体丰度/剪接事件)进行了探索,以进行比较分析,从而突出了剪接机制在定义肿瘤异质性方面的重要性。此外,这里我们展示了如何通过研究基因异构体的表达来帮助确定合适的体外模型。我们还提取了不同单细胞群体之间和内部的标记异构体和可变剪接基因,以提高乳腺癌亚型的分类。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验