Suppr超能文献

调控哺乳动物新皮质发育过程中神经干细胞的时间特性和神经发生与神经胶质发生的转变时机。

Regulation of temporal properties of neural stem cells and transition timing of neurogenesis and gliogenesis during mammalian neocortical development.

机构信息

Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan; Kyoto University Graduate School of Medicine, Kyoto, 606-8501, Japan; Kyoto University Graduate School of Biostudies, Kyoto, 606-8501, Japan.

Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan; Kyoto University Graduate School of Medicine, Kyoto, 606-8501, Japan; Kyoto University Graduate School of Biostudies, Kyoto, 606-8501, Japan; Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Kyoto, 606-8501, Japan.

出版信息

Semin Cell Dev Biol. 2019 Nov;95:4-11. doi: 10.1016/j.semcdb.2019.01.007. Epub 2019 Jan 17.

Abstract

In the developing mammalian neocortex, neural stem cells (NSCs) gradually alter their characteristics as development proceeds. NSCs initially expand the progenitor pool by symmetric proliferative division and then shift to asymmetric neurogenic division to commence neurogenesis. NSCs sequentially give rise to deep layer neurons first and superficial layer neurons later through mid- to late-embryonic stages, followed by shifting to a gliogenic phase at perinatal stages. The precise mechanisms regulating developmental timing of the transition from symmetric to asymmetric division have not been fully elucidated; however, gradual elongation in cell cycle length and concomitant accumulation of determinants that promote neuronal differentiation may function as a biological clock that regulates the onset of asymmetric neurogenic division. On the other hand, epigenetic regulatory systems have been implicated in the regulation of transition timing of neurogenesis and gliogenesis; the polycomb group (PcG) complex and Hmga genes have been found to govern the developmental timing by modulating chromatin structure during neocortical development. Furthermore, we uncovered several factors and mechanisms underlying the regulation of timing of neocortical neurogenesis and gliogenesis. In this review, we discuss recent findings regarding the mechanisms that govern the temporal properties of NSCs and the precise transition timing during neocortical development.

摘要

在哺乳动物皮质发育过程中,神经干细胞(NSC)逐渐改变其特性。NSC 最初通过对称增殖分裂来扩大祖细胞池,然后转变为不对称的神经发生分裂,开始神经发生。NSC 依次通过中胚层到晚期胚胎阶段产生深层神经元,然后产生浅层神经元,随后在围产期阶段转变为神经胶质发生阶段。调节从对称分裂到不对称分裂的发育时间转变的精确机制尚未完全阐明;然而,细胞周期长度的逐渐延长和促进神经元分化的决定因素的积累可能作为调节不对称神经发生分裂开始的生物钟发挥作用。另一方面,表观遗传调节系统已被牵涉到神经发生和神经胶质发生的过渡时间的调节中;多梳组(PcG)复合物和 Hmga 基因已被发现通过在大脑皮质发育过程中调节染色质结构来控制发育时间。此外,我们还发现了几个调节大脑皮质神经发生和神经胶质发生时间的因素和机制。在这篇综述中,我们讨论了关于控制 NSC 时间特性和大脑皮质发育过程中精确过渡时间的机制的最新发现。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验