Key Laboratory of Jiangsu Province for Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China.
Key Laboratory of Jiangsu Province for Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China.
J Colloid Interface Sci. 2019 Mar 22;540:97-106. doi: 10.1016/j.jcis.2019.01.023. Epub 2019 Jan 7.
A facile thermal polymerization was applied to synthesize carbon and oxygen dual-doped graphitic carbon nitride (MACN) with controllable electronic band structure using malonic acid and urea as precursors. The C and O atoms substituted the sp N atom in graphitic carbon nitride (CN). The 1MACN (1 represented that the weight ratio of malonic acid to urea is 1% during the synthesis) with optimal band structure could decompose 15 ppm bisphenol A (BPA) within 150 min, and the mineralization rate reached to 52%. The superior photocatalytic performance of 1MACN was mainly ascribed to electronic band structure together with optical properties. On the one hand, the formation of delocalized big π bonds favored the electrons transfer after the introducing of carbon atoms. On the other hand, a positive charge density existed on the C atoms because of high electronegativity of contiguous O (3.44) that substituted N compared with C (2.55), which could attribute to high activity of MACN catalyst. The study will contribute to the further improvement of visible-light photocatalytic BPA degradation and mineralization.
采用简便的热聚合方法,以丙二酸和尿素为前驱体,合成了具有可控电子能带结构的碳氧双掺杂石墨相氮化碳(MACN)。C 和 O 原子取代了石墨相氮化碳(CN)中的 sp ³ N 原子。具有最佳能带结构的 1MACN(1 代表在合成过程中丙二酸与尿素的重量比为 1%)可在 150 分钟内分解 15ppm 的双酚 A(BPA),矿化率达到 52%。1MACN 的优异光催化性能主要归因于电子能带结构和光学性质。一方面,碳原子的引入形成了离域的大 π 键,有利于电子转移。另一方面,由于与 C(2.55)相比,相邻 O(3.44)的电负性较高,取代 N 后的 C 原子上存在正电荷密度,这归因于 MACN 催化剂的高活性。该研究将有助于进一步提高可见光光催化 BPA 降解和矿化的效率。