Biomechanics Laboratory, Legacy Research Institute, Portland, OR, 97232, United States.
Institut de Mécanique des Fluides et des Solides, Université de Strasbourg, France.
Accid Anal Prev. 2019 Mar;124:58-65. doi: 10.1016/j.aap.2018.12.017. Epub 2019 Jan 8.
A novel bicycle helmet concept has been developed to mitigate rotational head acceleration, which is a predominant mechanism of traumatic brain injury (TBI). This WAVECEL concept employs a collapsible cellular structure that is recessed within the helmet to provide a rotational suspension. This cellular concept differs from other bicycle helmet technologies for mitigation of rotational head acceleration, such as the commercially available Multi-Directional Impact Protection System (MIPS) technology which employs a slip liner to permit sliding between the helmet and the head during impact. This study quantified the efficacy of both, the WAVECEL cellular concept, and a MIPS helmet, in direct comparison to a traditional bicycle helmet made of rigid expanded polystyrene (EPS).
Three bicycle helmet types were subjected to oblique impacts in guided vertical drop tests onto an angled anvil: traditional EPS helmets (CONTROL group); helmets with a MIPS slip liner (SLIP group); and helmets with a WAVECEL cellular structure (CELL group). Helmet performance was evaluated using 4.8 m/s impacts onto anvils angled at 30°, 45°, and 60° from the horizontal plane. In addition, helmet performance was tested at a faster speed of 6.2 m/s onto the 45° anvil. Five helmets were tested under each of the four impact conditions for each of the three groups, requiring a total of 60 helmets. Headform kinematics were acquired and used to calculate an injury risk criterion for Abbreviated Injury Score (AIS) 2 brain injury.
Linear acceleration of the headform remained below 90 g and was not associated with the risk of skull fracture in any impact scenario and helmet type. Headform rotational acceleration in the CONTROL group was highest for 6.2 m/s impacts onto the 45° anvil (7.2 ± 0.6 krad/s). In this impact scenario, SLIP helmets and CELL helmets reduced rotational acceleration by 22% (p = 0003) and 73% (p < 0.001), respectively, compared to CONTROL helmets. The CONTROL group had the highest AIS 2 brain injury risk of 59 ± 8% for 6.2 m/s impacts onto the 45° anvil. In this impact scenario, SLIP helmets and CELL helmets reduced the AIS 2 brain injury risk to 34.2% (p = 0.001) and 1.2% (p < 0.001), respectively, compared to CONTROL helmets.
Results of this study are limited to a narrow range of impact conditions, but demonstrated the potential that rotational acceleration and the associated brain injury risk can be significantly reduced by the cellular WAVECEL concept or a MIPS slip liner. Results obtained under specific impact angles and impact velocities indicated performance differences between these mechanisms. These differences emphasize the need for continued research and development efforts toward helmet technologies that further improve protection from brain injury over a wide range a realistic impact parameters.
为了减轻旋转性头部加速度,这是创伤性脑损伤(TBI)的主要机制,我们开发了一种新型自行车头盔概念。这种 WAVECEL 概念采用了可折叠的蜂窝结构,这种结构内置于头盔中,提供旋转悬架。这种蜂窝概念与其他用于减轻旋转性头部加速度的自行车头盔技术不同,例如市售的多方向冲击保护系统(MIPS)技术,该技术采用滑衬垫在冲击过程中允许头盔和头部之间滑动。本研究定量比较了 WAVECEL 蜂窝概念和 MIPS 头盔与传统由刚性膨胀聚苯乙烯(EPS)制成的自行车头盔的效果。
三种自行车头盔类型在倾斜的垂直跌落测试中受到斜向冲击,冲击物为倾斜的砧座:传统的 EPS 头盔(对照组);带有 MIPS 滑衬垫的头盔(滑衬垫组);带有 WAVECEL 蜂窝结构的头盔(蜂窝组)。使用 4.8 m/s 的速度冲击水平平面倾斜 30°、45°和 60°的砧座,评估头盔的性能。此外,还以 6.2 m/s 的速度在 45°砧座上测试了头盔的性能。每组三种头盔在每种冲击条件下各测试五个,共需 60 个头盔。采集头型运动学数据并用于计算简略损伤评分(AIS)2 脑损伤的损伤风险标准。
头型的线性加速度保持在 90g 以下,并且与任何冲击情况和头盔类型的颅骨骨折风险无关。在 CONTROL 组中,6.2 m/s 冲击 45°砧座时,头型的旋转加速度最高(7.2±0.6 krad/s)。在这种冲击情况下,与 CONTROL 头盔相比,滑衬垫头盔和蜂窝头盔的旋转加速度分别降低了 22%(p=0.0003)和 73%(p<0.001)。CONTROL 组在 6.2 m/s 冲击 45°砧座时,AIS 2 脑损伤风险最高,为 59±8%。在这种冲击情况下,与 CONTROL 头盔相比,滑衬垫头盔和蜂窝头盔将 AIS 2 脑损伤风险分别降低至 34.2%(p=0.001)和 1.2%(p<0.001)。
本研究结果仅限于狭窄的冲击条件范围,但表明旋转加速度和相关的脑损伤风险可以通过蜂窝 WAVECEL 概念或 MIPS 滑衬垫显著降低。在特定冲击角度和冲击速度下获得的结果表明了这些机制之间的性能差异。这些差异强调了需要继续进行头盔技术的研究和开发工作,以在广泛的现实冲击参数范围内进一步提高对脑损伤的保护。