Suppr超能文献

基于张量的极端学习机的鲁棒 L2 稀疏表示对含噪多光谱掌纹的改进识别方法。

An Improved Recognition Approach for Noisy Multispectral Palmprint by Robust L2 Sparse Representation with a Tensor-Based Extreme Learning Machine.

机构信息

School of Electronics and Information Engineering, MOE Key Lab for Intelligent Networks and Network Security, Xi'an Jiaotong University, Xi'an 710049, China.

Guangdong Xi'an Jiaotong University Academy, No. 3, Shuxiangdong Road, Daliang, Foshan 528000, China.

出版信息

Sensors (Basel). 2019 Jan 9;19(2):235. doi: 10.3390/s19020235.

Abstract

For the past decades, recognition technologies of multispectral palmprint have attracted more and more attention due to their abundant spatial and spectral characteristics compared with the single spectral case. Enlightened by this, an innovative robust L2 sparse representation with tensor-based extreme learning machine (RL2SR-TELM) algorithm is put forward by using an adaptive image level fusion strategy to accomplish the multispectral palmprint recognition. Firstly, we construct a robust L2 sparse representation (RL2SR) optimization model to calculate the linear representation coefficients. To suppress the affection caused by noise contamination, we introduce a logistic function into RL2SR model to evaluate the representation residual. Secondly, we propose a novel weighted sparse and collaborative concentration index (WSCCI) to calculate the fusion weight adaptively. Finally, we put forward a TELM approach to carry out the classification task. It can deal with the high dimension data directly and reserve the image spatial information well. Extensive experiments are implemented on the benchmark multispectral palmprint database provided by PolyU. The experiment results validate that our RL2SR-TELM algorithm overmatches a number of state-of-the-art multispectral palmprint recognition algorithms both when the images are noise-free and contaminated by different noises.

摘要

在过去的几十年中,与单光谱情况相比,多光谱掌纹由于其丰富的空间和光谱特性,引起了越来越多的关注。受此启发,本文提出了一种基于张量的极端学习机的创新鲁棒 L2 稀疏表示(RL2SR-TELM)算法,该算法采用自适应图像级融合策略来完成多光谱掌纹识别。首先,我们构建了一个鲁棒 L2 稀疏表示(RL2SR)优化模型来计算线性表示系数。为了抑制噪声污染的影响,我们在 RL2SR 模型中引入了一个逻辑函数来评估表示残差。其次,我们提出了一种新的加权稀疏和协同集中指数(WSCCI)来自适应地计算融合权重。最后,我们提出了一种 TELM 方法来进行分类任务。它可以直接处理高维数据,并很好地保留图像的空间信息。在 PolyU 提供的基准多光谱掌纹数据库上进行了广泛的实验。实验结果验证了我们的 RL2SR-TELM 算法在图像无噪声和不同噪声污染的情况下都优于许多先进的多光谱掌纹识别算法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6598/6359097/c5272d2f8efd/sensors-19-00235-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验