Suppr超能文献

三维细胞几何形状控制着变形虫细胞中的可兴奋膜信号。

Three-Dimensional Cell Geometry Controls Excitable Membrane Signaling in Dictyostelium Cells.

机构信息

Laboratory for Physical Biology, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan; Institute of Biomaterials and Biomolecular Systems, University of Stuttgart, Stuttgart, Germany; Institute for Integrated Cell-Material Sciences, Kyoto University, Kyoto, Japan.

Laboratory for Physical Biology, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan.

出版信息

Biophys J. 2019 Jan 22;116(2):372-382. doi: 10.1016/j.bpj.2018.12.012. Epub 2018 Dec 20.

Abstract

Phosphatidylinositol (3-5)-trisphosphate (PtdInsP3) is known to propagate as waves on the plasma membrane and is related to the membrane-protrusive activities in Dictyostelium and mammalian cells. Although there have been a few attempts to study the three-dimensional (3D) dynamics of these processes, most studies have focused on the dynamics extracted from single focal planes. However, the relation between the dynamics and 3D cell shape remains elusive because of the lack of signaling information about the unobserved part of the membrane. Here, we show that PtdInsP3 wave dynamics are directly regulated by the 3D geometry (i.e., size and shape) of the plasma membrane. By introducing an analysis method that extracts the 3D spatiotemporal activities on the entire cell membrane, we show that PtdInsP3 waves self-regulate their dynamics within the confined membrane area. This leads to changes in speed, orientation, and pattern evolution, following the underlying excitability of the signal transduction system. Our findings emphasize the role of the plasma membrane topology in reaction-diffusion-driven biological systems and indicate its importance in other mammalian systems.

摘要

磷脂酰肌醇(3-5)-三磷酸(PtdInsP3)已知在质膜上呈波状传播,与变形虫和哺乳动物细胞中的膜突起活性有关。尽管已经有一些尝试来研究这些过程的三维(3D)动力学,但大多数研究都集中在从单个焦平面提取的动力学上。然而,由于缺乏关于膜未观察部分的信号信息,膜动力学和 3D 细胞形状之间的关系仍然难以捉摸。在这里,我们表明 PtdInsP3 波动力学直接受质膜的 3D 几何形状(即大小和形状)的调节。通过引入一种分析方法,该方法提取整个细胞膜上的 3D 时空活性,我们表明 PtdInsP3 波在受限的膜区域内自我调节其动力学。这导致速度、方向和图案演化的变化,遵循信号转导系统的基本激活性。我们的发现强调了质膜拓扑在反应扩散驱动的生物系统中的作用,并表明其在其他哺乳动物系统中的重要性。

相似文献

7
Cell shape dynamics: from waves to migration.细胞形状动力学:从波动到迁移。
PLoS Comput Biol. 2012;8(3):e1002392. doi: 10.1371/journal.pcbi.1002392. Epub 2012 Mar 15.
10
How cortical waves drive fission of motile cells.皮质波如何驱动游动细胞的分裂。
Proc Natl Acad Sci U S A. 2020 Mar 24;117(12):6330-6338. doi: 10.1073/pnas.1912428117. Epub 2020 Mar 11.

引用本文的文献

5
How cortical waves drive fission of motile cells.皮质波如何驱动游动细胞的分裂。
Proc Natl Acad Sci U S A. 2020 Mar 24;117(12):6330-6338. doi: 10.1073/pnas.1912428117. Epub 2020 Mar 11.
6
A minimal computational model for three-dimensional cell migration.用于三维细胞迁移的最小计算模型。
J R Soc Interface. 2019 Dec;16(161):20190619. doi: 10.1098/rsif.2019.0619. Epub 2019 Dec 18.

本文引用的文献

3
Self-organization principles of intracellular pattern formation.细胞内模式形成的自组织原理。
Philos Trans R Soc Lond B Biol Sci. 2018 May 26;373(1747). doi: 10.1098/rstb.2017.0107.
5
Excitable Signal Transduction Networks in Directed Cell Migration.定向细胞迁移中的可兴奋信号转导网络。
Annu Rev Cell Dev Biol. 2017 Oct 6;33:103-125. doi: 10.1146/annurev-cellbio-100616-060739. Epub 2017 Aug 9.
6
Varieties of reentrant dynamics.折返动力学的多样性。
Chaos. 2017 Apr;27(4):041101. doi: 10.1063/1.4979602.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验