Institute of Physics and Astronomy, University of Potsdam, Potsdam, Germany.
Department of Mathematics, University of British Columbia, Vancouver, BC, Canada.
Elife. 2023 Jul 10;12:e87181. doi: 10.7554/eLife.87181.
Actin dynamics in cell motility, division, and phagocytosis is regulated by complex factors with multiple feedback loops, often leading to emergent dynamic patterns in the form of propagating waves of actin polymerization activity that are poorly understood. Many in the actin wave community have attempted to discern the underlying mechanisms using experiments and/or mathematical models and theory. Here, we survey methods and hypotheses for actin waves based on signaling networks, mechano-chemical effects, and transport characteristics, with examples drawn from , human neutrophils, , and oocytes. While experimentalists focus on the details of molecular components, theorists pose a central question of universality: Are there generic, model-independent, underlying principles, or just boundless cell-specific details? We argue that mathematical methods are equally important for understanding the emergence, evolution, and persistence of actin waves and conclude with a few challenges for future studies.
细胞运动、分裂和吞噬过程中的肌动蛋白动力学受到多种反馈回路的复杂因素的调节,通常会导致肌动蛋白聚合活性的传播波形式的动态模式出现,这些模式目前还不太清楚。肌动蛋白波研究领域的许多人已经尝试使用实验和/或数学模型和理论来识别潜在的机制。在这里,我们根据信号网络、机械化学效应和运输特性,调查了基于肌动蛋白波的方法和假设,并从 、人中性粒细胞、 和 卵母细胞中提取了示例。虽然实验人员专注于分子成分的细节,但理论家提出了一个普遍性的核心问题:是否存在通用的、与模型无关的潜在原则,还是只有无限的细胞特异性细节?我们认为,数学方法对于理解肌动蛋白波的出现、演变和持续同样重要,并为未来的研究提出了一些挑战。