Department of Biology, New York University, 1009 Silver Center, New York 10003.
Department of Biology, New York University, 1009 Silver Center, New York 10003
Genetics. 2019 Mar;211(3):861-875. doi: 10.1534/genetics.118.301745. Epub 2019 Jan 11.
The centromere plays an essential role in chromosome segregation. In most eukaryotes, centromeres are epigenetically defined by the conserved histone H3 variant CENP-A. Proper centromere assembly is dependent upon the tight regulation of CENP-A level. Cell cycle regulation of CENP-A transcription appears to be a universal feature across eukaryotes, but the molecular mechanism underlying the temporal control of CENP-A transcription and how such regulation contributes to centromere function remains elusive. CENP-A in fission yeast has been shown to be transcribed before S phase. Using various synchronization methods, we confirmed that CENP-A transcription occurs at G1, leading to an almost twofold increase of the protein during S phase. Through a genetic screen, we identified the MBF (MluI box-binding factors) complex as a key regulator of temporal control of CENP-A transcription. The periodic transcription of CENP-A is lost in MBF mutants, resulting in CENP-A mislocalization and chromosome segregation defects. We identified the MCB (MluI cell cycle box) motif in the CENP-A promoter, and further showed that the MBF complex binds to the motif to restrict CENP-A transcription to G1. Mutations of the MCB motif cause constitutive CENP-A expression and deleterious effects on cell survival. Using promoters driving transcription to different cell cycle stages, we found that timing of CENP-A transcription is dispensable for its centromeric localization. Our data instead indicate that cell cycle-regulated CENP-A transcription is a key step to ensure that a proper amount of CENP-A is generated across generations. This study provides mechanistic insights into the regulation of cell cycle-dependent CENP-A transcription, as well as its importance on centromere function.
着丝粒在染色体分离中起着至关重要的作用。在大多数真核生物中,着丝粒通过保守的组蛋白 H3 变体 CENP-A 来进行表观遗传定义。正确的着丝粒组装依赖于 CENP-A 水平的严格调节。CENP-A 转录的细胞周期调控似乎是真核生物的普遍特征,但 CENP-A 转录的时间控制的分子机制以及这种调控如何有助于着丝粒功能仍然难以捉摸。裂殖酵母中的 CENP-A 已被证明在 S 期之前转录。使用各种同步化方法,我们证实 CENP-A 转录发生在 G1 期,导致 S 期期间蛋白质水平几乎增加两倍。通过遗传筛选,我们确定了 MBF(MluI 盒结合因子)复合物是 CENP-A 转录时间控制的关键调节剂。MBF 突变体中 CENP-A 的周期性转录丢失,导致 CENP-A 定位错误和染色体分离缺陷。我们在 CENP-A 启动子中鉴定了 MCB(MluI 细胞周期盒)基序,进一步表明 MBF 复合物结合该基序以将 CENP-A 转录限制在 G1 期。MCB 基序的突变导致 CENP-A 的组成型表达和对细胞存活的有害影响。使用驱动不同细胞周期阶段转录的启动子,我们发现 CENP-A 转录的时间安排对于其着丝粒定位是可有可无的。我们的数据反而表明,细胞周期调控的 CENP-A 转录是确保在各代中产生适当数量的 CENP-A 的关键步骤。这项研究为细胞周期依赖性 CENP-A 转录的调节以及其对着丝粒功能的重要性提供了机制上的见解。