Suppr超能文献

链球菌 SK36 中 IV 型菌毛基因簇的分子和功能分析。

Molecular and Functional Analysis of the Type IV Pilus Gene Cluster in Streptococcus sanguinis SK36.

机构信息

Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan, Taiwan

Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.

出版信息

Appl Environ Microbiol. 2019 Mar 6;85(6). doi: 10.1128/AEM.02788-18. Print 2019 Mar 15.

Abstract

, dominant in the oral microbiome, is the only known streptococcal species possessing a gene cluster for the biosynthesis of type IV pili (Tfp). Although this cluster is commonly present in the genome of , most of the strains do not express Tfp-mediated twitching motility. Thus, this study was designed to investigate the biological functions encoded by the cluster in the twitching-negative strain SK36. We found that the cluster was transcribed as an operon, with three promoters located 5' to the cluster and one in the intergenic region between SSA_2307 and SSA_2305. Studies using promoter- fusion strains revealed that the transcription of the cluster was mainly driven by the distal 5' promoter, which is located more than 800 bases 5' to the first gene of the cluster, SSA_2318. Optimal expression of the cluster occurred at the early stationary growth phase in a CcpA-dependent manner, although a CcpA-binding consensus is absent in the promoter region. Expression of the cluster resulted in a short hairlike surface structure under transmission electron microscopy. Deletion of the putative pilin genes (SSA_2313 to SSA_2315) abolished the biosynthesis of this structure and significantly reduced the adherence of SK36 to HeLa and SCC-4 cells. Mutations in the genes downregulated biofilm formation by SK36. Taken together, the results demonstrate that Tfp of SK36 are important for host cell adherence, but not for motility, and that expression of the cluster is subject to complex regulation. The proteins and assembly machinery of the type IV pili (Tfp) are conserved throughout bacteria and archaea, and yet the function of this surface structure differs from species to species and even from strain to strain. As seen in SK36, the expression of the Tfp gene cluster results in a hairlike surface structure that is much shorter than the typical Tfp. This pilus is essential for the adherence of SK36 but is not involved in motility. Being a member of the highly diverse dental biofilm, perhaps could more effectively utilize this structure to adhere to host cells and to interact with other microbes within the same niche.

摘要

在口腔微生物组中占主导地位的 是唯一已知的具有用于合成 IV 型菌毛 (Tfp) 的基因簇的链球菌种。尽管该簇通常存在于 的基因组中,但大多数菌株不表达 Tfp 介导的蠕动运动。因此,本研究旨在研究在蠕动阴性菌株 SK36 中该簇编码的生物学功能。我们发现该簇作为一个操纵子转录,其三个启动子位于簇的 5'端,一个位于 SSA_2307 和 SSA_2305 之间的基因间区。使用启动子融合菌株的研究表明,该簇的转录主要由位于簇第一个基因 5'端超过 800 个碱基的远端 5'启动子驱动。尽管在启动子区域不存在 CcpA 结合的共有序列,但该簇的最佳表达发生在早期静止生长阶段,以 CcpA 依赖性方式。尽管在启动子区域不存在 CcpA 结合的共有序列,但该簇的最佳表达发生在早期静止生长阶段,以 CcpA 依赖性方式。表达该簇导致在透射电子显微镜下观察到短的发状表面结构。缺失推定的菌毛基因 (SSA_2313 至 SSA_2315) 会破坏该结构的生物合成,并显著降低 SK36 对 HeLa 和 SCC-4 细胞的粘附。基因的突变使 SK36 的生物膜形成减少。总之,结果表明 SK36 的 Tfp 对于宿主细胞粘附很重要,但对于运动不重要,并且 簇的表达受到复杂的调节。IV 型菌毛 (Tfp) 的蛋白质和组装机制在细菌和古细菌中是保守的,但这种表面结构的功能在不同物种甚至不同菌株中都有所不同。如在 SK36 中所见,Tfp 基因簇的表达导致发状表面结构比典型的 Tfp 短得多。这种菌毛对于 SK36 的粘附是必需的,但不参与运动。作为高度多样化的牙菌斑的成员,可能更有效地利用这种结构来粘附宿主细胞,并与同一生态位内的其他微生物相互作用。

相似文献

1
Molecular and Functional Analysis of the Type IV Pilus Gene Cluster in Streptococcus sanguinis SK36.
Appl Environ Microbiol. 2019 Mar 6;85(6). doi: 10.1128/AEM.02788-18. Print 2019 Mar 15.
2
Prevalence of Type IV Pili-Mediated Twitching Motility in Streptococcus sanguinis Strains and Its Impact on Biofilm Formation and Host Adherence.
Appl Environ Microbiol. 2022 Sep 22;88(18):e0140322. doi: 10.1128/aem.01403-22. Epub 2022 Sep 12.
3
Functional Analysis of the Major Pilin Proteins of Type IV Pili in CGMH010.
Int J Mol Sci. 2024 May 15;25(10):5402. doi: 10.3390/ijms25105402.
4
Type IV Pili of Streptococcus sanguinis Contribute to Pathogenesis in Experimental Infective Endocarditis.
Microbiol Spectr. 2021 Dec 22;9(3):e0175221. doi: 10.1128/Spectrum.01752-21. Epub 2021 Nov 10.
5
Pili of oral Streptococcus sanguinis bind to fibronectin and contribute to cell adhesion.
Biochem Biophys Res Commun. 2010 Jan 8;391(2):1192-6. doi: 10.1016/j.bbrc.2009.12.029. Epub 2009 Dec 14.
6
Pili of oral Streptococcus sanguinis bind to salivary amylase and promote the biofilm formation.
Microb Pathog. 2011 Mar-Apr;50(3-4):148-54. doi: 10.1016/j.micpath.2011.01.005. Epub 2011 Jan 14.
8
Global biochemical and structural analysis of the type IV pilus from the Gram-positive bacterium .
J Biol Chem. 2019 Apr 26;294(17):6796-6808. doi: 10.1074/jbc.RA118.006917. Epub 2019 Mar 5.
9
Functional analysis of an unusual type IV pilus in the Gram-positive Streptococcus sanguinis.
Mol Microbiol. 2016 Jan;99(2):380-92. doi: 10.1111/mmi.13237. Epub 2015 Oct 27.
10
Biological role of Actinobacillus pleuropneumoniae type IV pilus proteins encoded by the apf and pil operons.
Vet Microbiol. 2018 Oct;224:17-22. doi: 10.1016/j.vetmic.2018.08.006. Epub 2018 Aug 4.

引用本文的文献

1
Functional Analysis of the Major Pilin Proteins of Type IV Pili in CGMH010.
Int J Mol Sci. 2024 May 15;25(10):5402. doi: 10.3390/ijms25105402.
2
Bacterial biofilms in the human body: prevalence and impacts on health and disease.
Front Cell Infect Microbiol. 2023 Aug 30;13:1237164. doi: 10.3389/fcimb.2023.1237164. eCollection 2023.
3
Glycerol metabolism supports oral commensal interactions.
ISME J. 2023 Jul;17(7):1116-1127. doi: 10.1038/s41396-023-01426-9. Epub 2023 May 11.
4
5
Prevalence of Type IV Pili-Mediated Twitching Motility in Streptococcus sanguinis Strains and Its Impact on Biofilm Formation and Host Adherence.
Appl Environ Microbiol. 2022 Sep 22;88(18):e0140322. doi: 10.1128/aem.01403-22. Epub 2022 Sep 12.
6
Type IV Pili of Streptococcus sanguinis Contribute to Pathogenesis in Experimental Infective Endocarditis.
Microbiol Spectr. 2021 Dec 22;9(3):e0175221. doi: 10.1128/Spectrum.01752-21. Epub 2021 Nov 10.
7
The dental plaque biofilm matrix.
Periodontol 2000. 2021 Jun;86(1):32-56. doi: 10.1111/prd.12361. Epub 2021 Mar 10.
8
Manganese Depletion Leads to Multisystem Changes in the Transcriptome of the Opportunistic Pathogen .
Front Microbiol. 2020 Nov 5;11:592615. doi: 10.3389/fmicb.2020.592615. eCollection 2020.
9
Caldicellulosiruptor bescii Adheres to Polysaccharides via a Type IV Pilin-Dependent Mechanism.
Appl Environ Microbiol. 2020 Apr 17;86(9). doi: 10.1128/AEM.00200-20.
10
Transcriptome, Phenotypic, and Virulence Analysis of SK36 Wild Type and Its CcpA-Null Derivative (ΔCcpA).
Front Cell Infect Microbiol. 2019 Dec 4;9:411. doi: 10.3389/fcimb.2019.00411. eCollection 2019.

本文引用的文献

4
Motility and adhesion through type IV pili in Gram-positive bacteria.
Biochem Soc Trans. 2016 Dec 15;44(6):1659-1666. doi: 10.1042/BST20160221.
5
Type IV pili promote early biofilm formation by Clostridium difficile.
Pathog Dis. 2016 Aug;74(6). doi: 10.1093/femspd/ftw061. Epub 2016 Jun 30.
6
Regulation of Type IV Pili Contributes to Surface Behaviors of Historical and Epidemic Strains of Clostridium difficile.
J Bacteriol. 2015 Nov 23;198(3):565-77. doi: 10.1128/JB.00816-15. Print 2016 Feb 1.
7
Functional analysis of an unusual type IV pilus in the Gram-positive Streptococcus sanguinis.
Mol Microbiol. 2016 Jan;99(2):380-92. doi: 10.1111/mmi.13237. Epub 2015 Oct 27.
8
Regulating the Intersection of Metabolism and Pathogenesis in Gram-positive Bacteria.
Microbiol Spectr. 2015 Jun;3(3). doi: 10.1128/microbiolspec.MBP-0004-2014.
9
Exceptionally widespread nanomachines composed of type IV pilins: the prokaryotic Swiss Army knives.
FEMS Microbiol Rev. 2015 Jan;39(1):134-54. doi: 10.1093/femsre/fuu001. Epub 2014 Dec 4.
10
Cyclic di-GMP riboswitch-regulated type IV pili contribute to aggregation of Clostridium difficile.
J Bacteriol. 2015 Mar;197(5):819-32. doi: 10.1128/JB.02340-14. Epub 2014 Dec 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验