Department of Biological Sciences, Oakland University, Rochester, Michigan, USA.
Department of Biological Sciences, Oakland University, Rochester, Michigan, USA
Appl Environ Microbiol. 2020 Apr 17;86(9). doi: 10.1128/AEM.00200-20.
Biological hydrolysis of cellulose above 70°C involves microorganisms that secrete free enzymes and deploy separate protein systems to adhere to their substrate. Strongly cellulolytic is one such extreme thermophile, which deploys modular, multifunctional carbohydrate-acting enzymes to deconstruct plant biomass. Additionally, also encodes noncatalytic carbohydrate binding proteins, which likely evolved as a mechanism to compete against other heterotrophs in carbon-limited biotopes that these bacteria inhabit. Analysis of the pangenome identified a type IV pilus (T4P) locus encoded upstream of the tāpirins, that is encoded by all species. In this study, we sought to determine if the T4P plays a role in attachment to plant polysaccharides. The major pilin (CbPilA) was identified by the presence of pilin-like protein domains, paired with transcriptomics and proteomics data. Using immuno-dot blots, we determined that the plant polysaccharide xylan induced production of CbPilA 10- to 14-fold higher than glucomannan or xylose. Furthermore, we are able to demonstrate that recombinant CbPilA directly interacts with xylan and cellulose at elevated temperatures. Localization of CbPilA at the cell surface was confirmed by immunofluorescence microscopy. Lastly, a direct role for CbPilA in cell adhesion was demonstrated using recombinant CbPilA or anti-CbPilA antibodies to reduce cell adhesion to xylan and crystalline cellulose up to 4.5- and 2-fold, respectively. Based on these observations, we propose that CbPilA and, by extension, the T4P play a role in cell attachment to plant biomass. Most microorganisms are capable of attaching to surfaces in order to persist in their environment. Type IV (T4) pili produced by certain mesophilic promote adherence; however, a role for T4 pili encoded by thermophilic members of this phylum has yet to be demonstrated. Prior comparative genomics analyses identified a T4 pilus locus possessed by an extremely thermophilic genus within the Here, we demonstrate that attachment to plant biomass-related carbohydrates by strongly cellulolytic is mediated by T4 pilins. Surprisingly, xylan but not cellulose induced expression of the major T4 pilin. Regardless, the T4 pilin interacts with both polysaccharides at high temperatures and is located to the cell surface, where it is directly involved in attachment. Adherence to polysaccharides is likely key to survival in environments where carbon sources are limiting, allowing to compete against other plant-degrading microorganisms.
纤维素的生物水解在 70°C 以上涉及分泌游离酶的微生物,并利用单独的蛋白质系统来黏附于其底物。强纤维素分解菌就是这样一种极端嗜热微生物,它利用模块化、多功能的碳水化合物作用酶来解构植物生物质。此外,它还编码非催化性碳水化合物结合蛋白,这些蛋白可能是作为一种机制进化而来的,以与细菌栖息的碳限制生物区系中的其他异养生物竞争。对 的泛基因组分析鉴定了一个位于塔皮林上游的 IV 型菌毛(T4P)基因座,所有 物种都编码该基因座。在这项研究中,我们试图确定 是否 T4P 在附着于植物多糖上发挥作用。主要的菌毛(CbPilA)是通过存在菌毛样蛋白结构域来识别的,同时结合转录组学和蛋白质组学数据。通过免疫斑点印迹,我们确定植物多糖木聚糖诱导 CbPilA 的产生比甘露聚糖或木糖高出 10-14 倍。此外,我们能够证明重组 CbPilA 可在高温下直接与木聚糖和纤维素相互作用。通过免疫荧光显微镜证实 CbPilA 在细胞表面的定位。最后,使用重组 CbPilA 或抗 CbPilA 抗体来减少 对木聚糖和结晶纤维素的细胞黏附,证明了 CbPilA 在细胞黏附中的直接作用,分别降低了 4.5-和 2 倍。基于这些观察结果,我们提出 CbPilA 和 T4P 扩展到 细胞附着于植物生物质的作用。大多数微生物能够附着于表面以在其环境中持续存在。某些中温微生物产生的 IV 型(T4)菌毛促进黏附;然而,该门的嗜热成员编码的 T4 菌毛的作用尚未得到证实。先前的比较基因组学分析确定了在一个极其嗜热属中存在一个 T4 菌毛基因座,该属属于 。在这里,我们证明了强烈纤维素分解菌对与植物生物质相关的碳水化合物的附着是由 T4 菌毛介导的。令人惊讶的是,只有木聚糖而不是纤维素诱导主要 T4 菌毛的表达。无论如何,T4 菌毛在高温下与两种多糖相互作用,并位于细胞表面,在那里它直接参与 细胞的附着。对多糖的附着可能是在碳源有限的环境中生存的关键,使 能够与其他植物降解微生物竞争。