Suppr超能文献

用于功能性miRNA及其靶标组预测与分析的计算资源

Computational Resources for Prediction and Analysis of Functional miRNA and Their Targetome.

作者信息

Monga Isha, Kumar Manoj

机构信息

Bioinformatics Centre, Institute of Microbial Technology, Council of Scientific and Industrial Research, Chandigarh, India.

出版信息

Methods Mol Biol. 2019;1912:215-250. doi: 10.1007/978-1-4939-8982-9_9.

Abstract

microRNAs are evolutionarily conserved, endogenously produced, noncoding RNAs (ncRNAs) of approximately 19-24 nucleotides (nts) in length known to exhibit gene silencing of complementary target sequence. Their deregulated expression is reported in various disease conditions and thus has therapeutic implications. In the last decade, various computational resources are published in this field. In this chapter, we have reviewed bioinformatics resources, i.e., miRNA-centered databases, algorithms, and tools to predict miRNA targets. First section has enlisted more than 75 databases, which mainly covers information regarding miRNA registries, targets, disease associations, differential expression, interactions with other noncoding RNAs, and all-in-one resources. In the algorithms section, we have compiled about 140 algorithms from eight subcategories, viz. for the prediction of precursor (pre-) and mature miRNAs. These algorithms are developed on various sequence, structure, and thermodynamic based features incorporated into different machine learning techniques (MLTs). In addition, computational identification of miRNAs from high-throughput next generation sequencing (NGS) data and their variants, viz. isomiRs, differential expression, miR-SNPs, and functional annotation, are discussed. Prediction and analysis of miRNAs and their associated targets are also evaluated under miR-targets section providing knowledge regarding novel miRNA targets and complex host-pathogen interactions. In conclusion, we have provided comprehensive review of in silico resources published in miRNA research to help scientific community be updated and choose the appropriate tool according to their needs.

摘要

微小RNA(microRNAs)是进化上保守的、内源性产生的非编码RNA(ncRNAs),长度约为19 - 24个核苷酸(nts),已知可对互补靶序列进行基因沉默。据报道,它们在各种疾病状态下表达失调,因此具有治疗意义。在过去十年中,该领域发表了各种计算资源。在本章中,我们综述了生物信息学资源,即以微小RNA为中心的数据库、算法和预测微小RNA靶标的工具。第一部分列出了75多个数据库,主要涵盖有关微小RNA登记、靶标、疾病关联、差异表达、与其他非编码RNA的相互作用以及一体化资源的信息。在算法部分,我们从八个子类别中汇编了约140种算法,即用于预测前体(pre-)和成熟微小RNA。这些算法是基于纳入不同机器学习技术(MLTs)的各种序列、结构和热力学特征开发的。此外,还讨论了从高通量下一代测序(NGS)数据及其变体(即异微小RNA、差异表达、微小RNA单核苷酸多态性和功能注释)中进行微小RNA的计算鉴定。在微小RNA-靶标部分还评估了微小RNA及其相关靶标的预测和分析,提供了有关新型微小RNA靶标和复杂宿主-病原体相互作用的知识。总之,我们对微小RNA研究中发表的计算机资源进行了全面综述,以帮助科学界了解最新情况并根据其需求选择合适的工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验