Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, 78000, France.
Laboratory of Cell and Molecular Biology, Institute of Biology, University of Neuchâtel, Rue Emile-Argand 11, CH-2009 Neuchâtel, Switzerland.
New Phytol. 2019 May;222(3):1380-1391. doi: 10.1111/nph.15680. Epub 2019 Feb 5.
Double-stranded breaks can be repaired by different mechanisms such as homologous recombination (HR), classical nonhomologous end joining (C-NHEJ) and alternative end joining (Alt-EJ). Polymerase Q (POLQ) has been proposed to be the main factor involved in Alt-EJ-mediated DNA repair. Here we describe the role of POLQ in DNA repair and gene targeting in Physcomitrella patens. The disruption of the POLQ gene does not influence the genetic stability of P. patens nor its development. The polq mutant shows the same sensitivity as wild-type towards most of the genotoxic agents tested (ultraviolet (UV), methyl methanesulfonate (MMS) and cisplatin) with the notable exception of bleomycin for which it shows less sensitivity than the wild-type. Furthermore, we show that POLQ is involved in the repair of CRISPR-Cas9-induced double-stranded breaks in P. patens. We also demonstrate that POLQ is a potential competitor and/or inhibitor of the HR repair pathway. This finding has a consequence in terms of genetic engineering, as in the absence of POLQ the frequency of gene targeting is significantly increased and the number of clean two-sided HR-mediated insertions is enhanced. Therefore, the control of POLQ activity in plants could be a useful strategy to optimize the tools of genome engineering for plant breeding.
双链断裂可以通过不同的机制进行修复,如同源重组(HR)、经典非同源末端连接(C-NHEJ)和替代末端连接(Alt-EJ)。聚合酶 Q(POLQ)被提议是参与 Alt-EJ 介导的 DNA 修复的主要因素。在这里,我们描述了 POLQ 在Physcomitrella patens 中的 DNA 修复和基因靶向中的作用。POLQ 基因的缺失不会影响 P. patens 的遗传稳定性及其发育。与野生型相比,polq 突变体对大多数测试的遗传毒性剂(紫外线(UV)、甲基甲磺酸酯(MMS)和顺铂)表现出相同的敏感性,但博来霉素除外,其敏感性低于野生型。此外,我们表明 POLQ 参与了 P. patens 中 CRISPR-Cas9 诱导的双链断裂的修复。我们还证明 POLQ 是 HR 修复途径的潜在竞争者和/或抑制剂。这一发现对基因工程具有重要意义,因为在缺乏 POLQ 的情况下,基因靶向的频率显著增加,并且双侧面 HR 介导的插入的数量增加。因此,控制植物中的 POLQ 活性可能是优化植物育种基因组工程工具的有效策略。