School of Molecular Sciences, Arizona State University, Tempe, AZ, U.S.A.
Arizona State University-Banner Neurodegenerative Disease Research Center at the Biodesign Institute, Arizona State University, Tempe, AZ, U.S.A.
Biochem Soc Trans. 2023 Aug 31;51(4):1635-1646. doi: 10.1042/BST20221508.
CRISPR-Cas, the bacterial immune systems, have transformed the field of genome editing by providing efficient, easily programmable, and accessible tools for targeted genome editing. DNA base editors (BE) are state-of-the-art CRISPR-based technology, allowing for targeted modifications of individual nucleobases within the genome. Among the BEs, adenine base editors (ABEs) have shown great potential due to their ability to convert A-to-G with high efficiency. However, current ABEs have limitations in terms of their specificity and targeting range. In this review, we provide an overview of the molecular mechanism of ABEs, with a focus on the mechanism of deoxyadenosine deamination by evolved tRNA-specific adenosine deaminase (TadA). We discuss how mutations and adjustments introduced via both directed evolution as well as rational design have improved ABE efficiency and specificity. This review offers insights into the molecular mechanism of ABEs, providing a roadmap for future developments in the precision genome editing field.
CRISPR-Cas 是细菌的免疫系统,通过提供高效、易于编程和可访问的靶向基因组编辑工具,彻底改变了基因组编辑领域。DNA 碱基编辑器(BE)是最先进的基于 CRISPR 的技术,可在基因组内靶向修饰单个核碱基。在 BE 中,腺嘌呤碱基编辑器(ABE)因其能够高效地将 A 转换为 G 而显示出巨大的潜力。然而,当前的 ABE 在特异性和靶向范围方面存在局限性。在这篇综述中,我们提供了 ABE 的分子机制概述,重点介绍了通过进化的 tRNA 特异性腺苷脱氨酶(TadA)进行脱氧腺苷脱氨的机制。我们讨论了通过定向进化和合理设计引入的突变和调整如何提高 ABE 的效率和特异性。这篇综述深入了解了 ABE 的分子机制,为精确基因组编辑领域的未来发展提供了路线图。