Suppr超能文献

虚拟校准定量质谱成像技术可准确绘制生物异质组织中分析物的分布图。

Virtual Calibration Quantitative Mass Spectrometry Imaging for Accurately Mapping Analytes across Heterogenous Biotissue.

机构信息

State Key Laboratory of Bioactive Substance and Function of Natural Medicines , Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing 100050 , People's Republic of China.

Centre for Imaging and Systems Biology, School of Pharmacy , Minzu University of China , Beijing 100081 , People's Republic of China.

出版信息

Anal Chem. 2019 Feb 19;91(4):2838-2846. doi: 10.1021/acs.analchem.8b04762. Epub 2019 Jan 29.

Abstract

It is highly challenging to quantitatively map multiple analytes in biotissues without specific chemical labeling. Quantitative mass spectrometry imaging (QMSI) has this potential but still poses technical issues for its variant ionization efficiency across a complicated, heterogeneous biomatrices. Herein, a self-developed air-flow-assisted desorption electrospray ionization (AFADESI) is introduced to present a proof of concept method, virtual calibration (VC) QMSI. This method screens and utilizes analyte response-related endogenous metabolite ions from each mass spectrum as native internal standards (IS). Through machine-learning-based regression and clustering, tissue-specific ionization variation can be automatically recognized, predicted, and normalized region by region or pixel by pixel. Therefore, the quantity of analytes can be accurately mapped across highly structural biosamples including whole body, kidney, brain, tumor, etc. VC-QMSI has the advantages of simple sample preparation without laborious isotopic IS synthesis, extrapolation for those unknown tissues or regions without previous investigation, and automatic spatial recognition without histological guidance. This strategy is suitable for mass spectrometry imaging using a variety of in situ ionization techniques. It is believed that VC-QMSI has wide applicability for drug candidate's discovery, molecular mechanism elucidation, biomarker validation, and clinical diagnosis.

摘要

在没有特定化学标记的情况下,定量绘制生物组织中的多种分析物极具挑战性。定量质谱成像(QMSI)具有这种潜力,但在复杂的异质生物基质中,其变异性离子化效率仍然存在技术问题。在此,我们引入了一种自主开发的气流辅助解吸电喷雾电离(AFADESI),提出了一种虚拟校准(VC)QMSI 的概念验证方法。该方法从每个质谱中筛选并利用与分析物响应相关的内源性代谢物离子作为天然内标(IS)。通过基于机器学习的回归和聚类,可以自动识别、预测和逐区域或逐像素地对组织特异性离子化变化进行归一化。因此,可以准确地绘制包括全身、肾脏、大脑、肿瘤等高度结构生物样本中的分析物数量。VC-QMSI 具有无需繁琐的同位素 IS 合成即可进行简单样品制备的优点,适用于那些没有先前研究的未知组织或区域的外推,以及无需组织学指导即可自动进行空间识别。该策略适用于使用各种原位电离技术的质谱成像。我们相信,VC-QMSI 具有广泛的适用性,可用于药物候选物的发现、分子机制阐明、生物标志物验证和临床诊断。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验