Suppr超能文献

通过多模态证实的空间分割来描绘质谱成像的感兴趣区域。

Delineating regions of interest for mass spectrometry imaging by multimodally corroborated spatial segmentation.

机构信息

Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.

University of Chinese Academy of Sciences, Beijing 100049, China.

出版信息

Gigascience. 2022 Dec 28;12. doi: 10.1093/gigascience/giad021. Epub 2023 Apr 11.

Abstract

Mass spectrometry imaging (MSI), which localizes molecules in a tag-free, spatially resolved manner, is a powerful tool for the understanding of underlying biochemical mechanisms of biological phenomena. When analyzing MSI data, it is essential to delineate regions of interest (ROIs) that correspond to tissue areas of different anatomical or pathological labels. Spatial segmentation, obtained by clustering MSI pixels according to their mass spectral similarities, is a popular approach to automate ROI definition. However, how to select the number of clusters (#Clusters), which determines the granularity of segmentation, remains to be resolved, and an inappropriate #Clusters may lead to ROIs not biologically real. Here we report a multimodal fusion strategy to enable an objective and trustworthy selection of #Clusters by utilizing additional information from corresponding histology images. A deep learning-based algorithm is proposed to extract "histomorphological feature spectra" across an entire hematoxylin and eosin image. Clustering is then similarly performed to produce histology segmentation. Since ROIs originating from instrumental noise or artifacts would not be reproduced cross-modally, the consistency between histology and MSI segmentation becomes an effective measure of the biological validity of the results. So, #Clusters that maximize the consistency is deemed as most probable. We validated our strategy on mouse kidney and renal tumor specimens by producing multimodally corroborated ROIs that agreed excellently with ground truths. Downstream analysis based on the said ROIs revealed lipid molecules highly specific to tissue anatomy or pathology. Our work will greatly facilitate MSI-mediated spatial lipidomics, metabolomics, and proteomics research by providing intelligent software to automatically and reliably generate ROIs.

摘要

质谱成像(MSI)以无标签、空间分辨的方式定位分子,是理解生物现象潜在生化机制的有力工具。在分析 MSI 数据时,必须描绘与不同解剖学或病理学标签的组织区域相对应的感兴趣区域(ROI)。根据其质谱相似性对 MSI 像素进行聚类以获得空间分割,是一种自动定义 ROI 的常用方法。然而,如何选择聚类的数量(#Clusters),这决定了分割的粒度,仍然需要解决,并且不适当的#Clusters 可能导致 ROI 没有生物学意义。在这里,我们报告了一种多模态融合策略,通过利用来自相应组织学图像的附加信息,实现#Clusters 的客观和可靠选择。提出了一种基于深度学习的算法来提取整个苏木精和伊红图像的“组织形态学特征谱”。然后类似地进行聚类以产生组织学分割。由于来自仪器噪声或伪影的 ROI 不会跨模态再现,因此组织学和 MSI 分割之间的一致性成为结果生物学有效性的有效衡量标准。因此,被认为最有可能的是使一致性最大化的#Clusters。我们通过生成与地面实况非常吻合的多模态一致的 ROI ,在小鼠肾脏和肾肿瘤标本上验证了我们的策略。基于所述 ROI 的下游分析揭示了高度组织解剖学或病理学特异性的脂质分子。我们的工作将通过提供智能软件来自动和可靠地生成 ROI,极大地促进基于 MSI 的空间脂质组学、代谢组学和蛋白质组学研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ccc9/10087011/f06f4dd41c44/giad021fig1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验