Department of Neuroscience, Karolinska Institutet, Biomedicum, B0851, Solnavägen 9, 17177, Stockholm, Sweden.
Observatorio Cubano de Neurociencias, Grupo Bohío-Estudio, Zayas 50, 62100, Yaguajay, Cuba.
J Neural Transm (Vienna). 2019 Apr;126(4):455-471. doi: 10.1007/s00702-019-01969-2. Epub 2019 Jan 14.
The adenosine homo, iso and heteroreceptor complexes in the basal ganglia play a highly significant role in modulating the indirect and direct pathways and the striosomal projections to the nigro-striatal DA system. The major adenosine receptor complexes in the striato-pallidal GABA neurons can be the A2AR-D2R and A2AR-D2R-mGluR5 receptor complexes, in which A2AR protomers and mGluR5 protomers can allosterically interact to inhibit D2R protomer signaling. Through a reorganization of these heteroreceptor complexes upon chronic dopaminergic treatment a pathological and prolonged inhibition of D2R receptor protomer signaling can develop with motor inhibition and wearing off of the therapeutic effects of levodopa and dopamine receptor agonists. The direct pathway is enriched in D1R in and around glutamate synapses enhancing the ability of these GABA neurons to be activated and increase motor initiation. The brake on these GABA neurons is in this case exerted by A1R forming A1R-D1R heteroreceptor complexes in which they allosterically inhibit D1R signaling and thereby reduce motor initiation. Upon chronic levodopa treatment a reorganization of the D1R heteroreceptor complexes develops with the formation of putative A1R-D1R-D3 in addition to D1R-D3R complexes in which D3R enhances D1R protomer signaling and may make the A1R protomer brake less effective. Alpha-synuclein monomers-dimers are postulated to form complexes with A2AR homo and heteroprotomers in the plasma membrane enhancing alpha-synuclein aggregation and toxicity. The alpha-synuclein fibrils formed in the A2AR enriched dendritic spines of the striato-pallidal GABA neurons may reach the surrounding DA terminals via extracellular-vesicle-mediated volume transmission involving internalization of the vesicles and their cargo (alpha-synuclein fibrils) into the vulnerable DA terminals, enhancing their degeneration followed by retrograde flow of these fibrils in the DA axons to the vulnerable nigral DA nerve cells.
基底神经节中的腺苷同型、异型和异源受体复合物在调节间接和直接途径以及纹状体投射到黑质纹状体 DA 系统方面发挥着非常重要的作用。纹状苍白球 GABA 神经元中的主要腺苷受体复合物可以是 A2AR-D2R 和 A2AR-D2R-mGluR5 受体复合物,其中 A2AR 原聚体和 mGluR5 原聚体可以变构相互作用以抑制 D2R 原聚体信号。通过慢性多巴胺能治疗后这些异源受体复合物的重组,可以发展出病理性和持久的 D2R 受体原聚体信号抑制,伴随着运动抑制和左旋多巴和多巴胺受体激动剂治疗效果的消退。直接途径富含谷氨酸突触周围的 D1R,增强了这些 GABA 神经元被激活的能力,并增加了运动起始。这些 GABA 神经元的制动是由 A1R 施加的,形成 A1R-D1R 异源受体复合物,其中它们变构抑制 D1R 信号,从而减少运动起始。在慢性左旋多巴治疗后,D1R 异源受体复合物发生重组,形成假定的 A1R-D1R-D3 以及 D1R-D3R 复合物,其中 D3R 增强 D1R 原聚体信号,可能使 A1R 原聚体制动效果降低。α-突触核蛋白单体-二聚体被假定与质膜中的 A2AR 同型和异型原聚体形成复合物,增强α-突触核蛋白聚集和毒性。在纹状苍白球 GABA 神经元富含 A2AR 的树突棘中形成的α-突触核蛋白原纤维可能通过涉及囊泡内化及其货物(α-突触核蛋白原纤维)进入脆弱的 DA 末端的细胞外小泡介导的容积传递到达周围的 DA 末端,增强其退化,随后这些原纤维在 DA 轴突中逆行流回到脆弱的黑质 DA 神经元。