Suppr超能文献

评估自报告问卷数据在筛查年轻成年人糖代谢异常中的效用:来自美国国家健康和营养检查调查的结果。

Evaluating the utility of self-reported questionnaire data to screen for dysglycemia in young adults: Findings from the US National Health and Nutrition Examination Survey.

机构信息

Department of Health Sciences, Carleton University, Ottawa, Ontario, Canada.

Public Health Agency of Canada, Ottawa, Ontario, Canada.

出版信息

Prev Med. 2019 Mar;120:50-59. doi: 10.1016/j.ypmed.2019.01.002. Epub 2019 Jan 9.

Abstract

Dysglycemia, including prediabetes and type 2 diabetes, is dangerous and widespread. Yet, the condition is transiently reversible and sequelae preventable, prompting the use of prediction algorithms to quickly assess dysglycemia status through self-reported data. However, as current algorithms have largely been developed in older populations, their application to younger adults is uncertain considering associations between risk factors and dysglycemia vary by age. We sought to identify sex-specific predictors of current dysglycemia among young adults and evaluate their ability to screen for prediabetes and undiagnosed diabetes. We analyzed 2005-2014 data from the National Health and Nutrition Examination Survey for 3251 participants aged 20-39, who completed an oral glucose tolerance test (OGTT), had not been diagnosed with diabetes, and, for females, were not pregnant. Sex-specific stepwise logistic models were fit with predictors identified from univariate analyses. Risk scores were developed using adjusted odds ratios and model performance was assessed using area under the curve (AUC) measures. The OGTT identified 906 (27.9%) and 78 (2.4%) participants with prediabetes or undiagnosed diabetes, respectively. Predictors of dysglycemia status for males were BMI, age, race, and first-degree family history of diabetes, and, in addition to those, education, delivered baby weight, waist circumference, and vigorous physical activity for females. Our male- and female-specific models demonstrated improved validity to assess dysglycemia presence among young adults relative to the widely-used American Diabetes Association test (AUC = 0.69 vs. 0.61; 0.92 vs. 0.71, respectively). Thus, age-specific scoring algorithms employing questionnaire data show promise and are effective in identifying dysglycemia among young adults.

摘要

血糖异常,包括糖尿病前期和 2 型糖尿病,是危险且普遍存在的。然而,这种情况是暂时可逆的,且可以预防后遗症,这促使人们使用预测算法通过自我报告的数据快速评估血糖异常状态。然而,由于目前的算法主要是在老年人群中开发的,因此在考虑到危险因素与血糖异常之间的关联因年龄而异的情况下,将其应用于年轻人并不确定。我们试图确定年轻人中当前血糖异常的性别特异性预测因素,并评估它们筛查糖尿病前期和未确诊糖尿病的能力。我们分析了 2005-2014 年来自国家健康和营养调查的 3251 名年龄在 20-39 岁之间的参与者的数据,这些参与者完成了口服葡萄糖耐量试验(OGTT),没有被诊断为糖尿病,并且对于女性,没有怀孕。使用单变量分析中确定的预测因素,分别为男性和女性建立逐步逻辑模型。使用调整后的优势比开发风险评分,并使用曲线下面积(AUC)测量评估模型性能。OGTT 分别确定了 906 名(27.9%)和 78 名(2.4%)参与者患有糖尿病前期或未确诊的糖尿病。男性血糖异常状态的预测因素是 BMI、年龄、种族和一级糖尿病家族史,除了这些因素外,女性的预测因素还包括教育程度、分娩婴儿体重、腰围和剧烈的身体活动。与广泛使用的美国糖尿病协会测试(AUC=0.69 对 0.61;0.92 对 0.71)相比,我们的男性和女性特异性模型在评估年轻人的血糖异常存在方面显示出了更好的有效性。因此,使用问卷数据的特定年龄评分算法显示出了前景,并能有效识别年轻人的血糖异常。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验