Suppr超能文献

AMYCO:评估突变对朊病毒样蛋白聚集倾向的影响。

AMYCO: evaluation of mutational impact on prion-like proteins aggregation propensity.

机构信息

Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193, Spain.

Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, 08193, Spain.

出版信息

BMC Bioinformatics. 2019 Jan 14;20(1):24. doi: 10.1186/s12859-019-2601-3.

Abstract

BACKGROUND

Around 1% of human proteins are predicted to contain a disordered and low complexity prion-like domain (PrLD). Mutations in PrLDs have been shown promote a transition towards an aggregation-prone state in several diseases.

RESULTS

Recently, we have shown that an algorithm that considers the effects of mutations on PrLDs composition, as well as on localized amyloid propensity can predict the impact of these amino acid changes on protein intracellular aggregation. In this application note, we implement this concept into the AMYCO web server, a refined algorithm that forecasts the influence of amino acid changes in prion-like proteins aggregation propensity better than state-of-the-art predictors.

CONCLUSIONS

The AMYCO web server allows for a fast and automated evaluation of the effect of mutations on the aggregation properties of prion-like proteins. This might uncover novel disease-linked amino acid changes in the sequences of human prion-like proteins. Additionally, it can find application in the in silico design of synthetic prion-like proteins with tuned aggregation propensities for different purposes. AMYCO does not require previous registration and is freely available to all users at: http://bioinf.uab.cat/amyco/ .

摘要

背景

大约 1%的人类蛋白质被预测含有无规则和低复杂度的朊样结构域 (PrLD)。PrLD 中的突变已被证明可促进几种疾病向易于聚集的状态转变。

结果

最近,我们已经表明,一种考虑突变对 PrLD 组成以及局部淀粉样倾向影响的算法,可以预测这些氨基酸变化对蛋白质细胞内聚集的影响。在本应用说明中,我们将这一概念实现到 AMYCO 网络服务器中,这是一种经过改进的算法,比最先进的预测器更好地预测朊样蛋白聚集倾向的氨基酸变化的影响。

结论

AMYCO 网络服务器允许快速自动评估突变对朊样蛋白聚集特性的影响。这可能会揭示人类朊样蛋白序列中与疾病相关的新氨基酸变化。此外,它可以在计算机上设计具有不同聚集倾向的合成朊样蛋白,用于不同的目的。AMYCO 不需要事先注册,所有用户均可免费使用:http://bioinf.uab.cat/amyco/。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/20bc/6332698/acb287569f52/12859_2019_2601_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验