Chakrabortee Sohini, Kayatekin Can, Newby Greg A, Mendillo Marc L, Lancaster Alex, Lindquist Susan
Whitehead Institute for Biomedical Research, Cambridge, MA 02142;
Whitehead Institute for Biomedical Research, Cambridge, MA 02142; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139;
Proc Natl Acad Sci U S A. 2016 May 24;113(21):6065-70. doi: 10.1073/pnas.1604478113. Epub 2016 Apr 25.
Prion proteins provide a unique mode of biochemical memory through self-perpetuating changes in protein conformation and function. They have been studied in fungi and mammals, but not yet identified in plants. Using a computational model, we identified candidate prion domains (PrDs) in nearly 500 plant proteins. Plant flowering is of particular interest with respect to biological memory, because its regulation involves remembering and integrating previously experienced environmental conditions. We investigated the prion-forming capacity of three prion candidates involved in flowering using a yeast model, where prion attributes are well defined and readily tested. In yeast, prions heritably change protein functions by templating monomers into higher-order assemblies. For most yeast prions, the capacity to convert into a prion resides in a distinct prion domain. Thus, new prion-forming domains can be identified by functional complementation of a known prion domain. The prion-like domains (PrDs) of all three of the tested proteins formed higher-order oligomers. Uniquely, the Luminidependens PrD (LDPrD) fully replaced the prion-domain functions of a well-characterized yeast prion, Sup35. Our results suggest that prion-like conformational switches are evolutionarily conserved and might function in a wide variety of normal biological processes.
朊病毒蛋白通过蛋白质构象和功能的自我延续性变化提供了一种独特的生化记忆模式。它们已在真菌和哺乳动物中得到研究,但尚未在植物中被发现。我们利用一个计算模型,在近500种植物蛋白中鉴定出了候选朊病毒结构域(PrD)。就生物记忆而言,植物开花特别引人关注,因为其调控涉及对先前经历的环境条件的记忆和整合。我们使用酵母模型研究了三种参与开花的朊病毒候选蛋白的朊病毒形成能力,在酵母中,朊病毒属性定义明确且易于测试。在酵母中,朊病毒通过将单体模板化为高阶聚集体来遗传性地改变蛋白质功能。对于大多数酵母朊病毒来说,转化为朊病毒的能力存在于一个独特的朊病毒结构域中。因此,可以通过已知朊病毒结构域的功能互补来鉴定新的朊病毒形成结构域。所有三种测试蛋白的朊病毒样结构域(PrD)都形成了高阶寡聚体。独特的是,光敏色素互作因子PrD(LDPrD)完全取代了一种特征明确的酵母朊病毒Sup35的朊病毒结构域功能。我们的结果表明,朊病毒样构象转换在进化上是保守的,可能在多种正常生物过程中发挥作用。