Suppr超能文献

预测早期药物调整策略对重度抑郁症患者疗效的影响因素。

Predictors of the effectiveness of an early medication change strategy in patients with major depressive disorder.

机构信息

Department of Psychiatry and Psychotherapy, University Medical Center of the Johannes Gutenberg-University Mainz, Untere Zahlbacher Straße 8, D-55131, Mainz, Germany.

Department for Psychiatry and Psychotherapy, HELIOS Dr. Horst Schmidt Kliniken, Wiesbaden, Germany.

出版信息

BMC Psychiatry. 2019 Jan 14;19(1):24. doi: 10.1186/s12888-019-2014-x.

Abstract

BACKGROUND

Patients with Major Depressive Disorder (MDD) who are non-improvers after two weeks of antidepressant treatment have a high risk of treatment failure. Recently, we did not find differences in outcomes in non-improvers randomized to an early medication change (EMC) strategy compared to treatment as usual (TAU). This secondary analysis investigated possible predictors of higher remission rates in the EMC strategy.

METHODS

Of 192 non-improvers (i.e. decrease of ≤20% on the HAMD-17 depression scale) after a two-week treatment with escitalopram, n = 97 were randomized to EMC (immediate switch to high doses of venlafaxine XR) and n = 95 to TAU (continued escitalopram until day 28 with non-responders switched to venlafaxine XR). We first analyzed patient characteristics, psychopathological features and subtypes of MDD by logistic regression analyses as possible predictors of remission rates. In a second investigation, we analyzed the predictors, which showed a significant association in the first analysis before Bonferroni-Holm correction by chi-squared tests separated for treatment groups. All analyses were corrected by Bonferroni-Holm method.

RESULTS

The first analyses yielded no statistically significant results after correction for multiple testing. In the second analyses, however, patients with prior medication at study entry showed higher remission rates in EMC than in TAU (24.2% versus 8.6%, p = 0.017; Bonferroni-Holm corrected significance level: p = 0.025.). Furthermore, patients with a recurrent course of MDD benefited less from treatment as usual (p = 0.009; Bonferroni-Holm corrected significance level: p = 0.025). Age, sex, age of onset, psychiatric or somatic comorbidities, and other subtypes of MDD did not predict remission rates.

CONCLUSIONS

Although in our first analysis we found statistically non-significant results, the second analysis showed significant differences in remission rates between patients with or without previous medication and in patients with recurrent MDD or the first depressive episode. It would therefore be valuable to examine in larger and prospective studies whether remission rates can be increased by quick escalation of treatment in certain subgroups of patients. Promising subgroups to be tested are patients who were previously medicated, and who show a recurrent course of MDD.

TRIAL REGISTRATION

clinicaltrials.gov Identifier: NCT00974155 . Registered at the 10th of September 2009. Retrospectively registered.

摘要

背景

在两周抗抑郁治疗后未改善的重度抑郁症(MDD)患者有治疗失败的高风险。最近,我们发现随机分配至早期药物更换(EMC)策略的非改善者与常规治疗(TAU)相比,结局并无差异。这项二次分析调查了 EMC 策略中更高缓解率的可能预测因子。

方法

在 escitalopram 两周治疗后,有 192 名(即 HAMD-17 抑郁量表评分下降≤20%)非改善者,其中 n=97 例随机分配至 EMC(立即换用高剂量文拉法辛 XR),n=95 例继续 TAU(无应答者继续 escitalopram 治疗至第 28 天,然后换用文拉法辛 XR)。我们首先通过逻辑回归分析分析了患者特征、精神病理学特征和 MDD 亚型,作为缓解率的可能预测因子。在第二项研究中,我们分析了在未校正 Bonferroni-Holm 检验中首次分析显示出显著关联的预测因子,按治疗组进行了卡方检验。所有分析均校正了 Bonferroni-Holm 法。

结果

经多次检验校正后,首次分析未得出统计学上显著的结果。然而,在第二项分析中,与 TAU 相比,研究入组时有用药史的患者在 EMC 中缓解率更高(24.2%比 8.6%,p=0.017;Bonferroni-Holm 校正显著性水平:p=0.025)。此外,反复发作 MDD 的患者从常规治疗中获益较少(p=0.009;Bonferroni-Holm 校正显著性水平:p=0.025)。年龄、性别、发病年龄、精神或躯体共病以及 MDD 的其他亚型均不能预测缓解率。

结论

尽管在我们的首次分析中发现统计学上无显著结果,但第二次分析显示,有无既往用药史以及反复发作 MDD 或首次抑郁发作的患者缓解率存在显著差异。因此,在更大规模的前瞻性研究中,通过快速升级某些亚组患者的治疗是否可以提高缓解率,这将是有价值的。有前途的亚组有待测试,包括之前接受过药物治疗且患有反复发作性 MDD 的患者。

试验注册

clinicaltrials.gov 标识符:NCT00974155。于 2009 年 9 月 10 日注册。回顾性注册。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/92fb/6332626/3ea165c5050a/12888_2019_2014_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验