School of Resources and Environmental Engineering, Anhui University, Hefei, 230601, Anhui, China.
Anhui Province Key Laboratory of Wetland Ecosystem Protection and Restoration, Anhui University, Hefei, 230601, Anhui, China.
Environ Monit Assess. 2019 Jan 14;191(2):68. doi: 10.1007/s10661-019-7200-2.
The detection and prediction of land use/land cover (LULC) change is crucial for guiding land resource management, planning, and sustainable development. In the view of seasonal rhythm and phenological effect, detection and prediction would benefit greatly from LULC maps of the same seasons for different years. However, due to frequent cloudiness contamination, it is difficult to obtain same-season LULC maps when using existing remote sensing images. This study utilized the spatiotemporal data fusion (STF) method to obtain summer Landsat-scale images in Hefei over the past 30 years. The Cellular Automata-Markov model was applied to simulate and predict future LULC maps. The results demonstrate the following: (1) the STF method can generate the same inter-annual interval summer Landsat-scale data for analyzing LULC change; (2) the fused data can improve the LULC detection and prediction accuracy by shortening the inter-annual interval, and also obtain LULC prediction results for a specific year; (3) the areas of cultivated land, water, and vegetation decreased by 33.14%, 2.03%, and 16.36%, respectively, and the area of construction land increased by 200.46% from 1987 to 2032. The urban expansion rate will reach its peak until 2020, and then slow down. The findings provide valuable information for urban planners to achieve sustainable development goals.
土地利用/土地覆盖(LULC)变化的检测和预测对于指导土地资源管理、规划和可持续发展至关重要。从季节性节奏和物候效应来看,检测和预测将极大地受益于不同年份同一季节的 LULC 地图。然而,由于频繁的云污染,使用现有的遥感图像很难获得同一季节的 LULC 地图。本研究利用时空数据融合(STF)方法获取了过去 30 年来合肥夏季的 Landsat 规模图像。应用元胞自动机-马尔可夫模型对未来的 LULC 地图进行模拟和预测。结果表明:(1)STF 方法可以生成相同的年度间隔夏季 Landsat 规模数据,用于分析 LULC 变化;(2)融合数据可以通过缩短年际间隔来提高 LULC 检测和预测精度,并且还可以获得特定年份的 LULC 预测结果;(3)从 1987 年到 2032 年,耕地、水和植被的面积分别减少了 33.14%、2.03%和 16.36%,而建设用地的面积增加了 200.46%。城市扩张率将在 2020 年达到峰值,然后放缓。研究结果为城市规划者实现可持续发展目标提供了有价值的信息。