Suppr超能文献

在准确重建腮腺腺泡细胞的过程中[公式:见正文]动力学模型。

A Model of [Formula: see text] Dynamics in an Accurate Reconstruction of Parotid Acinar Cells.

机构信息

Department of Mathematics, The University of Auckland, 38 Princes Street, Auckland 1010, New Zealand.

University of Rochester Medical Center, School of Medicine and Dentistry, 601 Elmwood Ave, Box 711, Rochester NY, United States of America.

出版信息

Bull Math Biol. 2019 May;81(5):1394-1426. doi: 10.1007/s11538-018-00563-z. Epub 2019 Jan 14.

Abstract

We have constructed a spatiotemporal model of [Formula: see text] dynamics in parotid acinar cells, based on new data about the distribution of inositol trisphophate receptors (IPR). The model is solved numerically on a mesh reconstructed from images of a cluster of parotid acinar cells. In contrast to our earlier model (Sneyd et al. in J Theor Biol 419:383-393. https://doi.org/10.1016/j.jtbi.2016.04.030 , 2017b), which cannot generate realistic [Formula: see text] oscillations with the new data on IPR distribution, our new model reproduces the [Formula: see text] dynamics observed in parotid acinar cells. This model is then coupled with a fluid secretion model described in detail in a companion paper: A mathematical model of fluid transport in an accurate reconstruction of a parotid acinar cell (Vera-Sigüenza et al. in Bull Math Biol. https://doi.org/10.1007/s11538-018-0534-z , 2018b). Based on the new measurements of IPR distribution, we show that Class I models (where [Formula: see text] oscillations can occur at constant [[Formula: see text]]) can produce [Formula: see text] oscillations in parotid acinar cells, whereas Class II models (where [[Formula: see text]] needs to oscillate in order to produce [Formula: see text] oscillations) are unlikely to do so. In addition, we demonstrate that coupling fluid flow secretion with the [Formula: see text] signalling model changes the dynamics of the [Formula: see text] oscillations significantly, which indicates that [Formula: see text] dynamics and fluid flow cannot be accurately modelled independently. Further, we determine that an active propagation mechanism based on calcium-induced calcium release channels is needed to propagate the [Formula: see text] wave from the apical region to the basal region of the acinar cell.

摘要

我们根据关于肌醇三磷酸受体(IPR)分布的新数据,构建了腮腺腺泡细胞中[Formula: see text]动力学的时空模型。该模型在根据一组腮腺腺泡细胞图像重建的网格上进行数值求解。与我们早期的模型(Sneyd 等人,在 J Theor Biol 419:383-393。https://doi.org/10.1016/j.jtbi.2016.04.030 ,2017b)不同,该模型无法使用新的 IPR 分布数据生成真实的[Formula: see text]振荡,我们的新模型再现了在腮腺腺泡细胞中观察到的[Formula: see text]动力学。然后,该模型与在一篇配套论文中详细描述的流体分泌模型耦合:一个在准确重建的腮腺腺泡细胞中流体传输的数学模型(Vera-Sigüenza 等人,在 Bull Math Biol。https://doi.org/10.1007/s11538-018-0534-z ,2018b)。基于新的 IPR 分布测量结果,我们表明,I 类模型(其中[Formula: see text]振荡可以在常数[[Formula: see text]]下发生)可以在腮腺腺泡细胞中产生[Formula: see text]振荡,而 II 类模型(其中[[Formula: see text]]需要振荡才能产生[Formula: see text]振荡)不太可能这样做。此外,我们证明,将流体流动分泌与[Formula: see text]信号模型耦合会显著改变[Formula: see text]振荡的动力学,这表明[Formula: see text]动力学和流体流动不能独立地进行准确建模。此外,我们确定需要基于钙诱导钙释放通道的主动传播机制将[Formula: see text]波从腺泡细胞的顶端区域传播到底部区域。

相似文献

引用本文的文献

6
Ca Imaging in Mouse Salivary Glands.小鼠唾液腺中的钙成像
Bio Protoc. 2022 Apr 5;12(7):e4380. doi: 10.21769/BioProtoc.4380.

本文引用的文献

3
On the dynamical structure of calcium oscillations.论钙振荡的动力学结构
Proc Natl Acad Sci U S A. 2017 Feb 14;114(7):1456-1461. doi: 10.1073/pnas.1614613114. Epub 2017 Feb 1.
7
A computational model of lysosome-ER Ca2+ microdomains.溶酶体-内质网Ca2+微区的计算模型
J Cell Sci. 2014 Jul 1;127(Pt 13):2934-43. doi: 10.1242/jcs.149047. Epub 2014 Apr 4.
9
A dynamic model of saliva secretion.唾液分泌的动力学模型。
J Theor Biol. 2010 Oct 21;266(4):625-40. doi: 10.1016/j.jtbi.2010.06.027. Epub 2010 Jun 25.
10
Mesh generation from 3D multi-material images.从3D多材料图像生成网格。
Med Image Comput Comput Assist Interv. 2009;12(Pt 2):283-90. doi: 10.1007/978-3-642-04271-3_35.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验