Suppr超能文献

通过原子内电荷转移实现的钇掺杂单硫化钐中的巨各向同性负热膨胀。

Giant isotropic negative thermal expansion in Y-doped samarium monosulfides by intra-atomic charge transfer.

作者信息

Takenaka Koshi, Asai Daigo, Kaizu Ryoichi, Mizuno Yosuke, Yokoyama Yasunori, Okamoto Yoshihiko, Katayama Naoyuki, Suzuki Hiroyuki S, Imanaka Yasutaka

机构信息

Department of Applied Physics, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan.

Research Center for Advanced Measurement and Characterization, National Institute for Materials Science (NIMS), Sengen, Tsukuba, 305-0047, Japan.

出版信息

Sci Rep. 2019 Jan 15;9(1):122. doi: 10.1038/s41598-018-36568-w.

Abstract

Stimulated by strong demand for thermal expansion control from advanced modern industries, various giant negative thermal expansion (NTE) materials have been developed during the last decade. Nevertheless, most such materials exhibit anisotropic thermal expansion in the crystal lattice. Therefore, strains and cracks induced during repeated thermal cycling degrade their performance as thermal-expansion compensators. Here we achieved giant isotropic NTE with volume change exceeding 3%, up to 4.1%, via control of the electronic configuration in Sm atoms of SmS, (4 f) or (4 f)(5d), by partial replacement of Sm with Y. Contrary to NTE originating from cooperative phenomena such as magnetism, the present NTE attributable to the intra-atomic phenomenon avoids the size effect of NTE and therefore provides us with fine-grained thermal-expansion compensators, which are strongly desired to control thermal expansion of microregions such as underfill of a three-dimensional integrated circuit. Volume control of lanthanide monosulfides via tuning of the 4 f electronic configuration presents avenues for novel mechanical functions of a material, such as a volume-change driven actuator by an electrical field, which has a different drive principle from those of conventional strain-driven actuators such as piezostrictive or magnetostrictive materials.

摘要

受现代先进产业对热膨胀控制的强烈需求刺激,在过去十年中已开发出各种巨大负热膨胀(NTE)材料。然而,大多数此类材料在晶格中表现出各向异性热膨胀。因此,在反复热循环过程中产生的应变和裂纹会降低其作为热膨胀补偿器的性能。在此,我们通过用Y部分替代Sm来控制SmS中Sm原子的电子构型((4f)或(4f)(5d)),实现了体积变化超过3%、高达4.1%的巨大各向同性NTE。与源自磁性等协同现象的NTE相反,这种归因于原子内现象的NTE避免了NTE的尺寸效应,因此为我们提供了细粒度的热膨胀补偿器,这对于控制诸如三维集成电路底部填充等微区的热膨胀非常有必要。通过调整4f电子构型对镧系单硫化物进行体积控制,为材料的新型机械功能开辟了途径,例如由电场驱动的体积变化致动器,其驱动原理与压电或磁致伸缩材料等传统应变驱动致动器不同。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b7e6/6333773/f1ac2e834701/41598_2018_36568_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验