Laboratory of Materials and Interface Chemistry & Centre for Multiscale Electron Microscopy , Eindhoven University of Technology , 5600 MB Eindhoven , The Netherlands.
Nanolytics GmbH , Am Mühlenberg 11 , 14476 Potsdam , Germany.
Nano Lett. 2019 Feb 13;19(2):1136-1142. doi: 10.1021/acs.nanolett.8b04496. Epub 2019 Jan 17.
Binary colloidal nanoparticles have been found to form different types of crystalline phases at varied radial positions in a centrifugal field by Chen et al. ( ACS Nano 2015, 9, 6944-50). The variety of binary phase behaviors resulted from the two different nanoparticle concentration gradients, but to date, the gradients can only be empirically controlled. For the first time, we are able to measure, fit, and simulate binary hard-sphere colloidal nanoparticle concentration gradients at high particle concentrations up to 30 vol %, which enables tailor-made gradients in a centrifugal field. By this means, a continuous range of binary particle concentration ratios can be accessed in one single experiment to obtain an extended phase diagram. By dispersing two differently sized silica nanoparticles labeled with two different fluorescence dyes in a refractive index matching solvent, we can use a multi-wavelength analytical ultracentrifuge (MWL-AUC) to measure the individual concentration gradient for each particle size in sedimentation-diffusion equilibrium. The influence of the remaining slight turbidity at high concentration can be corrected using the MWL spectra from the AUC data. We also show that the experimental concentration gradients can be fitted using a noninteracting nonideal sedimentation model. By using these fitted parameters, we are able to simulate nanoparticle concentration gradients, which agreed with the subsequent experiments at a high concentration of 10 vol % and thus allowed for the simulation of binary concentration gradients of hard-sphere nanoparticles in preparative ultracentrifuges (PUCs). Finally we demonstrated that by simulating the concentration gradients in PUCs, a continuous and extended binary nanoparticle phase diagram can be obtained by simply studying the structure evolution along the centrifugal field for one single sample instead of a large number of experiments with discrete compositions as in conventional studies.
陈等人发现,在离心场中,二元胶体纳米粒子在不同的径向位置形成不同类型的晶体相。(ACS Nano 2015,9,6944-50)。由于两种不同的纳米粒子浓度梯度,二元相行为的多样性,但迄今为止,梯度只能经验控制。我们首次能够测量、拟合和模拟二元硬球胶体纳米粒子在高达 30%体积浓度下的浓度梯度,这使得在离心场中能够定制梯度。通过这种方式,可以在一个单一的实验中获得一个连续的二元粒子浓度比范围,以获得一个扩展的相图。通过在折射率匹配的溶剂中分散两个用两种不同荧光染料标记的不同尺寸的二氧化硅纳米粒子,我们可以使用多波长分析超速离心(MWL-AUC)在沉降-扩散平衡中测量每个粒径的单个浓度梯度。可以使用 AUC 数据中的 MWL 光谱来校正高浓度下残留的轻微浊度的影响。我们还表明,可以使用非相互作用的非理想沉降模型拟合实验浓度梯度。通过使用这些拟合参数,我们能够模拟纳米粒子浓度梯度,这与在 10%体积浓度的高浓度下的后续实验相吻合,从而允许在制备超速离心机(PUC)中模拟硬球纳米粒子的二元浓度梯度。最后,我们证明,通过在 PUC 中模拟浓度梯度,可以通过简单地研究单一样品沿离心场的结构演化来获得连续和扩展的二元纳米粒子相图,而无需像传统研究那样进行大量具有离散组成的实验。