Gatinel Damien, Malet Jacques, Dumas Laurent
J Opt Soc Am A Opt Image Sci Vis. 2018 Dec 1;35(12):2035-2045. doi: 10.1364/JOSAA.35.002035.
Zernike circle polynomials are in widespread use for wavefront analysis because of their orthogonality over a circular pupil and their representation of balanced classical aberrations. However, some of the higher-order modes contain linear and quadratic terms. A new aberration series is proposed to better separate the low- versus higher-order aberration components. Because its higher-order modes are devoid of linear and quadratic terms, our new basis can be used to better fit the low- and higher-order components of the wavefront. This new basis may quantify the aberrations more accurately and provide clinicians with coefficient magnitudes which better underline the impact of clinically significant aberration modes.
由于泽尼克圆多项式在圆形光瞳上具有正交性且能表示平衡的经典像差,因此在波前分析中得到广泛应用。然而,一些高阶模式包含线性和二次项。本文提出了一种新的像差序列,以更好地分离低阶和高阶像差分量。由于其高阶模式没有线性和二次项,我们的新基可用于更好地拟合波前的低阶和高阶分量。这种新基可以更准确地量化像差,并为临床医生提供系数大小,从而更好地突出具有临床意义的像差模式的影响。