Rothschild Foundation Hospital, Paris, France.
Mathematics Laboratory of Versailles, UVSQ, CNRS, Université Paris-Saclay, Versailles, France.
Indian J Ophthalmol. 2020 Dec;68(12):2670-2678. doi: 10.4103/ijo.IJO_1760_20.
We are in the midst of a shift towards using novel polynomials to decompose wavefront aberrations in a more ophthalmologically relevant way. Zernike polynomials have useful mathematical properties but fail to provide clinically relevant wavefront interpretation and predictions. We compared the distribution of the eye's aberrations and demonstrate some clinical applications of this using case studies comparing the results produced by the Zernike decomposition and evaluating them against the lower degree/higher degree (LD/HD) polynomial decomposition basis which clearly dissociates the higher and lower aberrations. In addition, innovative applications validate the LD/HD polynomial basis. Absence of artificial reduction of some higher order aberrations coefficients lead to a more realistic analysis. Here we summarize how wavefront analysis has evolved and demonstrate some of its new clinical applications.
我们正处于一种转向,即使用新的多项式以更符合眼科学的方式分解波前像差。泽尼克多项式具有有用的数学特性,但无法提供临床相关的波前解释和预测。我们比较了眼睛像差的分布,并通过案例研究展示了这种方法的一些临床应用,这些案例研究比较了泽尼克分解产生的结果,并将其与较低阶/较高阶(LD/HD)多项式分解基进行了比较,后者清楚地区分了较高和较低的像差。此外,创新的应用验证了 LD/HD 多项式基。一些较高阶像差系数的人为减少的缺失导致了更真实的分析。在这里,我们总结了波前分析的发展,并展示了它的一些新的临床应用。