Suppr超能文献

人类鼻病毒 3C 蛋白酶抑制的良好和不良分子指纹:通过基于蒙特卡罗的 QSAR 研究的鉴定、验证和新抑制剂设计中的应用。

Good and bad molecular fingerprints for human rhinovirus 3C protease inhibition: identification, validation, and application in designing of new inhibitors through Monte Carlo-based QSAR study.

机构信息

Laboratory of Drug Design and Discovery, Department of Pharmaceutical Sciences, Dr. Harisingh Gour University (A Central University), Sagar, India.

Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India.

出版信息

J Biomol Struct Dyn. 2020 Jan;38(1):66-77. doi: 10.1080/07391102.2019.1566093. Epub 2019 Jan 31.

Abstract

HRV 3 C protease (HRV 3C) is an important target for common cold and upper respiratory tract infection. Keeping in view of the non-availability of drug for the treatment, newer computer-based modelling strategies should be applied to rationalize the process of antiviral drug discovery in order to decrease the valuable time and huge expenditure of the process. The present work demonstrates a structure wise optimization using Monte Carlo-based QSAR method that decomposes ligand compounds (in SMILES format) into several molecular fingerprints/descriptors. The current state-of-the-art in QSAR study involves the balance of correlation approach using four different sets: training, invisible training, calibration, and validation. The final models were also validated through mean absolute error, index of ideality of correlation, Y-randomization and applicability domain analysis. and values for the best model were 0.8602, 0.8507 (training); 0.8435, 0.8331 (invisible training); 0.7424, 0.7020 (calibration); 0.5993, 0.5216 (validation), respectively. The process identified some molecular substructures as good and bad fingerprints depending on their effect to increase or decrease the HRV 3C inhibition. Finally, new inhibitors were designed based on the fundamental concept to replace the bad fragments with the good fragments as well as including more good fragments into the structure. The study points out the importance of the fingerprint based drug design strategy through Monte Carlo optimization method in the modelling of HRV 3C inhibitors.

摘要

人呼吸道合胞病毒 3 型蛋白酶(HRV 3C)是普通感冒和上呼吸道感染的重要靶点。鉴于目前尚无治疗该病毒的药物,应该应用基于计算机的新型建模策略来合理化抗病毒药物发现过程,以减少该过程的宝贵时间和巨大支出。本工作展示了一种基于结构的优化方法,该方法使用基于蒙特卡罗的 QSAR 方法将配体化合物(以 SMILES 格式)分解为几个分子指纹/描述符。当前 QSAR 研究的最新进展涉及使用四个不同数据集(训练集、看不见的训练集、校准集和验证集)的相关性方法的平衡。最终模型还通过平均绝对误差、相关性理想指数、Y 随机化和适用域分析进行了验证。最佳模型的 值和 值分别为 0.8602、0.8507(训练集)、0.8435、0.8331(看不见的训练集)、0.7424、0.7020(校准集)和 0.5993、0.5216(验证集)。该过程根据其增加或降低 HRV 3C 抑制的效果,确定了一些分子亚结构作为良好和不良指纹。最后,根据基本概念设计了新的抑制剂,用良好的片段取代不良片段,并将更多的良好片段纳入结构中。该研究通过蒙特卡罗优化方法在 HRV 3C 抑制剂建模中指出了基于指纹的药物设计策略的重要性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验