Suppr超能文献

Interactions between Escherichia coli arginyl-tRNA synthetase and its substrates.

作者信息

Lin S X, Wang Q, Wang Y L

机构信息

Shanghai Institute of Biochemistry, Academia Sinica, China.

出版信息

Biochemistry. 1988 Aug 23;27(17):6348-53. doi: 10.1021/bi00417a023.

Abstract

Interactions between Escherichia coli arginyl-tRNA synthetase and its substrates were extensively studied and distinctly demonstrated. Various approaches such as equilibrium dialysis, fluorescence titration, and substrate protection against heat inactivation of the enzyme were used for these studies. In the absence of other substrates, the equilibrium dissociation constants for arginine, ATP, and the cognate tRNA were about 70 microM, 0.85 mM, and 0.45 microM, respectively, at pH 7.5, in Tris buffer. The binding of arginine to the enzyme was affected neither by the presence of tRNA nor by the presence of ATP but was considerably enhanced when ATP and tRNA were both present at saturating concentrations. The dissociation constant in this case (about 16 microM) was very close to the Km (12 microM) for arginine during aminoacylation. The binding of ATP (the equilibrium dissociation constant KD approximately 0.85 mM) was not affected by the presence of arginine but was depressed in the presence of tRNA (KD became 3 mM). Arginyl-tRNA showed a dissociation constant of (4-5) X 10(-7) M which was not affected by the presence of a single other substrate. Possible explanations for the high Km for tRNA in the aminoacylation are discussed. Our results indicated pronounced interactions between substrates mediated by the enzyme under catalytic conditions. Periodate oxidation did not alter the tRNA binding to the enzyme. The oxidized tRNA still afforded protection against heat inactivation of the enzyme.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验