From the Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts.
Anesth Analg. 2019 Apr;128(4):820-830. doi: 10.1213/ANE.0000000000004017.
Multivariable regression analysis is a powerful statistical tool in biomedical research with numerous applications. While linear regression can be used to model the expected value (ie, mean) of a continuous outcome given the covariates in the model, quantile regression can be used to compare the entire distribution of a continuous response or a specific quantile of the response between groups. The advantage of the quantile regression methodology is that it allows for understanding relationships between variables outside of the conditional mean of the response; it is useful for understanding an outcome at its various quantiles and comparing groups or levels of an exposure on those quantiles. We present quantile regression in a 3-step approach: determining that quantile regression is desired, fitting the quantile regression model, and interpreting the model results. We then apply our quantile regression analysis approach using 2 illustrative examples from the 2015 American College of Surgeons National Surgical Quality Improvement Program Pediatric database, and 1 example utilizing data on duration of sensory block in rats.
多变量回归分析是生物医学研究中一种强大的统计工具,具有许多应用。虽然线性回归可用于根据模型中的协变量来模拟连续结果的预期值(即均值),但分位数回归可用于比较组间连续响应的整个分布或特定分位数的响应。分位数回归方法的优势在于,它允许在响应的条件均值之外理解变量之间的关系;它对于理解各个分位数的结果以及在这些分位数上比较组或暴露水平很有用。我们以三步法介绍分位数回归:确定需要分位数回归、拟合分位数回归模型以及解释模型结果。然后,我们使用来自 2015 年美国外科医师学会国家外科质量改进计划儿科数据库的 2 个说明性示例以及 1 个利用大鼠感觉阻滞持续时间数据的示例应用我们的分位数回归分析方法。