Suppr超能文献

Nprl2 的 Arg-78 催化 Rag GTPases 被 GATOR1 刺激的 GTP 水解。

Arg-78 of Nprl2 catalyzes GATOR1-stimulated GTP hydrolysis by the Rag GTPases.

机构信息

From the Whitehead Institute for Biomedical Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, Koch Institute for Integrative Cancer Research, Cambridge, Massachusetts 02139, and Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts 02142.

From the Whitehead Institute for Biomedical Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, Koch Institute for Integrative Cancer Research, Cambridge, Massachusetts 02139, and Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts 02142

出版信息

J Biol Chem. 2019 Feb 22;294(8):2970-2975. doi: 10.1074/jbc.AC119.007382. Epub 2019 Jan 16.

Abstract

mTOR complex 1 (mTORC1) is a major regulator of cell growth and proliferation that coordinates nutrient inputs with anabolic and catabolic processes. Amino acid signals are transmitted to mTORC1 through the Rag GTPases, which directly recruit mTORC1 onto the lysosomal surface, its site of activation. The Rag GTPase heterodimer has a unique architecture that consists of two GTPase subunits, RagA or RagB bound to RagC or RagD. Their nucleotide-loading states are strictly controlled by several lysosomal or cytosolic protein complexes that directly detect and transmit the amino acid signals. GATOR1 (GTPase-activating protein (GAP) activity toward Rags-1), a negative regulator of the cytosolic branch of the nutrient-sensing pathway, comprises three subunits, Depdc5 (DEP domain-containing protein 5), Nprl2 (NPR2-like GATOR1 complex subunit), and Nprl3 (NPR3-like GATOR1 complex subunit), and is a GAP for RagA. GATOR1 binds the Rag GTPases via two modes: an inhibitory mode that holds the Rag GTPase heterodimer and has previously been captured by structural determination, and a GAP mode that stimulates GTP hydrolysis by RagA but remains structurally elusive. Here, using site-directed mutagenesis, GTP hydrolysis assays, coimmunoprecipitation experiments, and structural analysis, we probed the GAP mode and found that a critical residue on Nprl2, Arg-78, is the arginine finger that carries out GATOR1's GAP function. Substitutions of this arginine residue rendered mTORC1 signaling insensitive to amino acid starvation and are found frequently in cancers such as glioblastoma. Our results reveal the biochemical bases of mTORC1 inactivation through the GATOR1 complex.

摘要

mTOR 复合物 1(mTORC1)是细胞生长和增殖的主要调节剂,它协调营养物质的输入与合成代谢和分解代谢过程。氨基酸信号通过 Rag GTPases 传递到 mTORC1,Rag GTPases 直接将 mTORC1 募集到溶酶体表面,这是其激活的部位。Rag GTPase 异二聚体具有独特的结构,由两个 GTPase 亚基 RagA 或 RagB 与 RagC 或 RagD 结合而成。它们的核苷酸加载状态受到几种溶酶体或细胞质蛋白复合物的严格控制,这些复合物直接检测和传递氨基酸信号。GATOR1(Rags-1 的 GTPase 激活蛋白(GAP)活性)是营养感应途径细胞质分支的负调节剂,由三个亚基组成,Depdc5(DEP 结构域蛋白 5)、Nprl2(NPR2 样 GATOR1 复合物亚基)和 Nprl3(NPR3 样 GATOR1 复合物亚基),是 RagA 的 GAP。GATOR1 通过两种模式与 Rag GTPases 结合:一种抑制模式,保持 Rag GTPase 异二聚体,先前已通过结构测定捕获,另一种 GAP 模式,刺激 RagA 的 GTP 水解,但结构仍难以捉摸。在这里,我们使用定点突变、GTP 水解测定、共免疫沉淀实验和结构分析,探测了 GAP 模式,发现 Nprl2 上的一个关键残基 Arg-78 是执行 GATOR1 GAP 功能的精氨酸指。该精氨酸残基的取代使 mTORC1 信号对氨基酸饥饿不敏感,并且在诸如神经胶质瘤的癌症中频繁发现。我们的结果揭示了通过 GATOR1 复合物使 mTORC1 失活的生化基础。

相似文献

1
Arg-78 of Nprl2 catalyzes GATOR1-stimulated GTP hydrolysis by the Rag GTPases.
J Biol Chem. 2019 Feb 22;294(8):2970-2975. doi: 10.1074/jbc.AC119.007382. Epub 2019 Jan 16.
2
Architecture of the human GATOR1 and GATOR1-Rag GTPases complexes.
Nature. 2018 Apr 5;556(7699):64-69. doi: 10.1038/nature26158. Epub 2018 Mar 28.
5
Cryo-EM structures of the human GATOR1-Rag-Ragulator complex reveal a spatial-constraint regulated GAP mechanism.
Mol Cell. 2022 May 19;82(10):1836-1849.e5. doi: 10.1016/j.molcel.2022.03.002. Epub 2022 Mar 25.
6
An interdomain hydrogen bond in the Rag GTPases maintains stable mTORC1 signaling in sensing amino acids.
J Biol Chem. 2021 Jul;297(1):100861. doi: 10.1016/j.jbc.2021.100861. Epub 2021 Jun 9.
8
GATOR1 Mutations Impair PI3 Kinase-Dependent Growth Factor Signaling Regulation of mTORC1.
Int J Mol Sci. 2024 Feb 8;25(4):2068. doi: 10.3390/ijms25042068.
9
Amino acid-dependent NPRL2 interaction with Raptor determines mTOR Complex 1 activation.
Cell Signal. 2016 Feb;28(2):32-41. doi: 10.1016/j.cellsig.2015.11.008. Epub 2015 Nov 12.
10
Amino acids activate mammalian target of rapamycin (mTOR) complex 1 without changing Rag GTPase guanyl nucleotide charging.
J Biol Chem. 2014 Jan 31;289(5):2658-74. doi: 10.1074/jbc.M113.528505. Epub 2013 Dec 11.

引用本文的文献

1
Pre-vaccination transcriptomic profiles of immune responders to the MUC1 peptide vaccine for colon cancer prevention.
Front Immunol. 2024 Oct 10;15:1437391. doi: 10.3389/fimmu.2024.1437391. eCollection 2024.
2
Rag-Ragulator is the central organizer of the physical architecture of the mTORC1 nutrient-sensing pathway.
Proc Natl Acad Sci U S A. 2024 Aug 27;121(35):e2322755121. doi: 10.1073/pnas.2322755121. Epub 2024 Aug 20.
3
Structures and Functions of the Human GATOR1 Complex.
Subcell Biochem. 2024;104:269-294. doi: 10.1007/978-3-031-58843-3_12.
5
GATOR1 Mutations Impair PI3 Kinase-Dependent Growth Factor Signaling Regulation of mTORC1.
Int J Mol Sci. 2024 Feb 8;25(4):2068. doi: 10.3390/ijms25042068.
6
PRMT1 orchestrates with SAMTOR to govern mTORC1 methionine sensing via Arg-methylation of NPRL2.
Cell Metab. 2023 Dec 5;35(12):2183-2199.e7. doi: 10.1016/j.cmet.2023.11.001. Epub 2023 Nov 24.
7
The molecular basis of nutrient sensing and signalling by mTORC1 in metabolism regulation and disease.
Nat Rev Mol Cell Biol. 2023 Dec;24(12):857-875. doi: 10.1038/s41580-023-00641-8. Epub 2023 Aug 23.
8
Structure of the Schizosaccharomyces pombe Gtr-Lam complex reveals evolutionary divergence of mTORC1-dependent amino acid sensing.
Structure. 2023 Sep 7;31(9):1065-1076.e5. doi: 10.1016/j.str.2023.06.012. Epub 2023 Jul 14.
9
Ring domains are essential for GATOR2-dependent mTORC1 activation.
Mol Cell. 2023 Jan 5;83(1):74-89.e9. doi: 10.1016/j.molcel.2022.11.021. Epub 2022 Dec 16.
10
Longin domain GAP complexes in nutrient signalling, membrane traffic and neurodegeneration.
FEBS Lett. 2023 Mar;597(6):750-761. doi: 10.1002/1873-3468.14538. Epub 2022 Nov 22.

本文引用的文献

1
mTOR signalling and cellular metabolism are mutual determinants in cancer.
Nat Rev Cancer. 2018 Dec;18(12):744-757. doi: 10.1038/s41568-018-0074-8.
2
Ragulator and SLC38A9 activate the Rag GTPases through noncanonical GEF mechanisms.
Proc Natl Acad Sci U S A. 2018 Sep 18;115(38):9545-9550. doi: 10.1073/pnas.1811727115. Epub 2018 Sep 4.
3
The landscape of epilepsy-related GATOR1 variants.
Genet Med. 2019 Feb;21(2):398-408. doi: 10.1038/s41436-018-0060-2. Epub 2018 Aug 10.
4
Architecture of the human GATOR1 and GATOR1-Rag GTPases complexes.
Nature. 2018 Apr 5;556(7699):64-69. doi: 10.1038/nature26158. Epub 2018 Mar 28.
6
Intersubunit Crosstalk in the Rag GTPase Heterodimer Enables mTORC1 to Respond Rapidly to Amino Acid Availability.
Mol Cell. 2017 Nov 2;68(3):552-565.e8. doi: 10.1016/j.molcel.2017.09.026. Epub 2017 Oct 19.
7
mTOR Signaling in Growth, Metabolism, and Disease.
Cell. 2017 Mar 9;168(6):960-976. doi: 10.1016/j.cell.2017.02.004.
8
Familial focal epilepsy with focal cortical dysplasia due to DEPDC5 mutations.
Ann Neurol. 2015 Apr;77(4):675-83. doi: 10.1002/ana.24368. Epub 2015 Mar 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验