Suppr超能文献

环结构域对于 GATOR2 依赖性 mTORC1 激活是必需的。

Ring domains are essential for GATOR2-dependent mTORC1 activation.

机构信息

Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA.

Joint Research Center for Musculoskeletal Tumor of Shanghai Changzheng Hospital and University of Shanghai for Science and Technology, Spinal Tumor Center, Department of Orthopedic Oncology, Shanghai Changzheng Hospital, Shanghai 200003, China.

出版信息

Mol Cell. 2023 Jan 5;83(1):74-89.e9. doi: 10.1016/j.molcel.2022.11.021. Epub 2022 Dec 16.

Abstract

The GATOR2-GATOR1 signaling axis is essential for amino-acid-dependent mTORC1 activation. However, the molecular function of the GATOR2 complex remains unknown. Here, we report that disruption of the Ring domains of Mios, WDR24, or WDR59 completely impedes amino-acid-mediated mTORC1 activation. Mechanistically, via interacting with Ring domains of WDR59 and WDR24, the Ring domain of Mios acts as a hub to maintain GATOR2 integrity, disruption of which leads to self-ubiquitination of WDR24. Physiologically, leucine stimulation dissociates Sestrin2 from the Ring domain of WDR24 and confers its availability to UBE2D3 and subsequent ubiquitination of NPRL2, contributing to GATOR2-mediated GATOR1 inactivation. As such, WDR24 ablation or Ring deletion prevents mTORC1 activation, leading to severe growth defects and embryonic lethality at E10.5 in mice. Hence, our findings demonstrate that Ring domains are essential for GATOR2 to transmit amino acid availability to mTORC1 and further reveal the essentiality of nutrient sensing during embryonic development.

摘要

GATOR2-GATOR1 信号轴对于氨基酸依赖的 mTORC1 激活至关重要。然而,GATOR2 复合物的分子功能仍然未知。在这里,我们报告说,破坏 Mios、WDR24 或 WDR59 的环结构域完全阻碍了氨基酸介导的 mTORC1 激活。在机制上,Mios 的环结构域通过与 WDR59 和 WDR24 的环结构域相互作用,充当维持 GATOR2 完整性的枢纽,其破坏导致 WDR24 的自我泛素化。从生理上讲,亮氨酸刺激将 Sestrin2 从 WDR24 的环结构域中解离出来,并使其能够与 UBE2D3 结合,随后对 NPRL2 进行泛素化,有助于 GATOR2 介导的 GATOR1 失活。因此,WDR24 的缺失或环结构域的缺失阻止了 mTORC1 的激活,导致在小鼠中 E10.5 时出现严重的生长缺陷和胚胎致死。因此,我们的发现表明,环结构域对于 GATOR2 将氨基酸可用性传递给 mTORC1 是必不可少的,并进一步揭示了营养感应在胚胎发育过程中的重要性。

相似文献

1
Ring domains are essential for GATOR2-dependent mTORC1 activation.
Mol Cell. 2023 Jan 5;83(1):74-89.e9. doi: 10.1016/j.molcel.2022.11.021. Epub 2022 Dec 16.
2
The GATOR2 Component Wdr24 Regulates TORC1 Activity and Lysosome Function.
PLoS Genet. 2016 May 11;12(5):e1006036. doi: 10.1371/journal.pgen.1006036. eCollection 2016 May.
3
Structure of the nutrient-sensing hub GATOR2.
Nature. 2022 Jul;607(7919):610-616. doi: 10.1038/s41586-022-04939-z. Epub 2022 Jul 13.
4
AMPK-dependent phosphorylation of the GATOR2 component WDR24 suppresses glucose-mediated mTORC1 activation.
Nat Metab. 2023 Feb;5(2):265-276. doi: 10.1038/s42255-022-00732-4. Epub 2023 Feb 2.
6
GATOR2 rings GATOR1 to speak to mTORC1.
Mol Cell. 2023 Jan 5;83(1):6-8. doi: 10.1016/j.molcel.2022.12.011.
7
The Sestrins interact with GATOR2 to negatively regulate the amino-acid-sensing pathway upstream of mTORC1.
Cell Rep. 2014 Oct 9;9(1):1-8. doi: 10.1016/j.celrep.2014.09.014. Epub 2014 Sep 25.
8
SZT2 dictates GATOR control of mTORC1 signalling.
Nature. 2017 Mar 16;543(7645):433-437. doi: 10.1038/nature21378. Epub 2017 Feb 15.
9
The GATOR2-mTORC2 axis mediates Sestrin2-induced AKT Ser/Thr kinase activation.
J Biol Chem. 2020 Feb 14;295(7):1769-1780. doi: 10.1074/jbc.RA119.010857. Epub 2020 Jan 8.
10
Wdr59 promotes or inhibits TORC1 activity depending on cellular context.
Proc Natl Acad Sci U S A. 2023 Jan 3;120(1):e2212330120. doi: 10.1073/pnas.2212330120. Epub 2022 Dec 28.

引用本文的文献

1
Structural basis for the dynamic regulation of mTORC1 by amino acids.
Nature. 2025 Aug 20. doi: 10.1038/s41586-025-09428-7.
2
The Molecular Basis of Amino Acids Sensing.
Adv Sci (Weinh). 2025 Jul;12(26):e2501889. doi: 10.1002/advs.202501889. Epub 2025 May 24.
4
Amino acids and KLHL22 do not activate mTORC1 via DEPDC5 degradation.
Nature. 2025 Jan;637(8045):E11-E14. doi: 10.1038/s41586-024-07974-0. Epub 2025 Jan 8.
5
Reply to: Amino acids and KLHL22 do not activate mTORC1 via DEPDC5 degradation.
Nature. 2025 Jan;637(8045):E15-E17. doi: 10.1038/s41586-024-07975-z.
7
Unveiling GATOR2 Function: Novel Insights from Drosophila Research.
Cells. 2024 Oct 30;13(21):1795. doi: 10.3390/cells13211795.
8
Structures and Functions of the Human GATOR1 Complex.
Subcell Biochem. 2024;104:269-294. doi: 10.1007/978-3-031-58843-3_12.

本文引用的文献

1
Structure of the nutrient-sensing hub GATOR2.
Nature. 2022 Jul;607(7919):610-616. doi: 10.1038/s41586-022-04939-z. Epub 2022 Jul 13.
2
CUL5-ARIH2 E3-E3 ubiquitin ligase structure reveals cullin-specific NEDD8 activation.
Nat Chem Biol. 2021 Oct;17(10):1075-1083. doi: 10.1038/s41589-021-00858-8. Epub 2021 Sep 13.
3
SAR1B senses leucine levels to regulate mTORC1 signalling.
Nature. 2021 Aug;596(7871):281-284. doi: 10.1038/s41586-021-03768-w. Epub 2021 Jul 21.
4
Cullin-RING Ubiquitin Ligase Regulatory Circuits: A Quarter Century Beyond the F-Box Hypothesis.
Annu Rev Biochem. 2021 Jun 20;90:403-429. doi: 10.1146/annurev-biochem-090120-013613. Epub 2021 Apr 6.
5
The GATOR-Rag GTPase pathway inhibits mTORC1 activation by lysosome-derived amino acids.
Science. 2020 Oct 16;370(6514):351-356. doi: 10.1126/science.aaz0863.
6
Modulating TRADD to restore cellular homeostasis and inhibit apoptosis.
Nature. 2020 Nov;587(7832):133-138. doi: 10.1038/s41586-020-2757-z. Epub 2020 Sep 23.
7
Sumoylation on its 25th anniversary: mechanisms, pathology, and emerging concepts.
FEBS J. 2020 Aug;287(15):3110-3140. doi: 10.1111/febs.15319. Epub 2020 May 1.
8
mTOR at the nexus of nutrition, growth, ageing and disease.
Nat Rev Mol Cell Biol. 2020 Apr;21(4):183-203. doi: 10.1038/s41580-019-0199-y. Epub 2020 Jan 14.
9
NEDD4 and NEDD4L regulate Wnt signalling and intestinal stem cell priming by degrading LGR5 receptor.
EMBO J. 2020 Feb 3;39(3):e102771. doi: 10.15252/embj.2019102771. Epub 2019 Dec 23.
10
Vps11 and Vps18 of Vps-C membrane traffic complexes are E3 ubiquitin ligases and fine-tune signalling.
Nat Commun. 2019 Apr 23;10(1):1833. doi: 10.1038/s41467-019-09800-y.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验