Suppr超能文献

用于纤维超级电容器的多孔石墨烯-碳纳米管支架。

Porous Graphene-Carbon Nanotube Scaffolds for Fiber Supercapacitors.

机构信息

Department of Fiber System Engineering , Dankook University , Yongin 16890 , Republic of Korea.

出版信息

ACS Appl Mater Interfaces. 2019 Mar 6;11(9):9011-9022. doi: 10.1021/acsami.8b17908. Epub 2019 Jan 17.

Abstract

Fiber nanomaterials can become fundamental devices that can be woven into smart textiles, for example, miniaturized fiber-based supercapacitors (FSCs). They can be utilized for portable, wearable electronics and energy storage devices, which are highly prospective areas of research in the future. Herein, we developed porous carbon nanotube-graphene hybrid fibers (CNT-GFs) for all-solid-state symmetric FSCs, which were assembled through wet-spinning followed by a hydrothermal activation process using environmentally benign chemicals (i.e., HO and NHOH in deionized water). The barriers that limited effective ion accessibility in GFs were overcome by the intercalation of CNTs in the GFs which enhanced their electrical conductivity and mechanical properties as well. The all-solid-state symmetric FSCs of a precisely controlled activated hybrid fiber (a-CNT-GF) electrode exhibited an enhanced volumetric capacitance of 60.75 F cm compared with those of a pristine CNT-GF electrode (19.80 F cm). They also showed a volumetric energy density (4.83 mWh cm) roughly 3 times higher than that of untreated CNT-GFs (1.50 mWh cm). The excellent mechanical flexibility and structural stability of a miniaturized a-CNT-GF are highlighted by the demonstration of negligible differences in capacitance upon bending and twisting. The mechanism of developing porous, large-scale, low-cost electrodes using an environmentally benign activation method presented in this work provides a promising route for designing a new generation of wearable, portable miniaturized energy storage devices.

摘要

纤维纳米材料可以成为基本器件,可以编织到智能纺织品中,例如,微型纤维基超级电容器 (FSCs)。它们可以用于便携式、可穿戴的电子产品和储能设备,这是未来极具前景的研究领域。在此,我们开发了多孔碳纳米管-石墨烯杂化纤维 (CNT-GFs) 用于全固态对称 FSCs,通过湿纺和随后的水热活化过程使用环保化学品 (即去离子水中的 HO 和 NHOH) 组装而成。通过 CNT 在 GFs 中的插层克服了限制 GFs 中有效离子可及性的障碍,从而提高了它们的导电性和机械性能。精确控制的活化杂化纤维 (a-CNT-GF) 电极的全固态对称 FSCs 表现出增强的体积电容 60.75 F cm,与原始 CNT-GF 电极 (19.80 F cm) 相比。它们还表现出大约 3 倍更高的体积能量密度 (4.83 mWh cm),未处理的 CNT-GFs 为 1.50 mWh cm。通过展示在弯曲和扭曲时电容几乎没有差异,突出了小型化 a-CNT-GF 的出色机械灵活性和结构稳定性。本工作中提出的使用环保活化方法开发多孔、大规模、低成本电极的机制为设计新一代可穿戴、便携式微型储能设备提供了有前途的途径。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验