Suppr超能文献

深度学习算法结合人口统计学信息有助于在年度工人健康检查数据中的胸部 X 光片中检测结核病。

Deep Learning Algorithms with Demographic Information Help to Detect Tuberculosis in Chest Radiographs in Annual Workers' Health Examination Data.

机构信息

Department of Biostatistics and Computing, Yonsei University Graduate School, Seoul 03722, Korea.

The Institute for Occupational Health, Yonsei University College of Medicine, Seoul 03722, Korea.

出版信息

Int J Environ Res Public Health. 2019 Jan 16;16(2):250. doi: 10.3390/ijerph16020250.

Abstract

We aimed to use deep learning to detect tuberculosis in chest radiographs in annual workers' health examination data and compare the performances of convolutional neural networks (CNNs) based on images only (I-CNN) and CNNs including demographic variables (D-CNN). The I-CNN and D-CNN models were trained on 1000 chest X-ray images, both positive and negative, for tuberculosis. Feature extraction was conducted using VGG19, InceptionV3, ResNet50, DenseNet121, and InceptionResNetV2. Age, weight, height, and gender were recorded as demographic variables. The area under the receiver operating characteristic (ROC) curve (AUC) was calculated for model comparison. The AUC values of the D-CNN models were greater than that of I-CNN. The AUC values for VGG19 increased by 0.0144 (0.957 to 0.9714) in the training set, and by 0.0138 (0.9075 to 0.9213) in the test set (both < 0.05). The D-CNN models show greater sensitivity than I-CNN models (0.815 vs. 0.775, respectively) at the same cut-off point for the same specificity of 0.962. The sensitivity of D-CNN does not attenuate as much as that of I-CNN, even when specificity is increased by cut-off points. Conclusion: Our results indicate that machine learning can facilitate the detection of tuberculosis in chest X-rays, and demographic factors can improve this process.

摘要

我们旨在利用深度学习在年度工人健康检查数据中的胸部 X 光片中检测结核病,并比较仅基于图像的卷积神经网络(I-CNN)和包含人口统计学变量的卷积神经网络(D-CNN)的性能。I-CNN 和 D-CNN 模型在 1000 张胸部 X 光片上进行了训练,这些 X 光片既有阳性也有阴性的结核病。使用 VGG19、InceptionV3、ResNet50、DenseNet121 和 InceptionResNetV2 进行特征提取。年龄、体重、身高和性别被记录为人口统计学变量。计算了接收者操作特征(ROC)曲线下的面积(AUC)以进行模型比较。D-CNN 模型的 AUC 值大于 I-CNN 模型。VGG19 在训练集中的 AUC 值增加了 0.0144(0.957 至 0.9714),在测试集中增加了 0.0138(0.9075 至 0.9213)(均<0.05)。在相同的特异性为 0.962 时,D-CNN 模型的敏感性(分别为 0.815 和 0.775)大于 I-CNN 模型。随着截断点特异性的提高,D-CNN 的敏感性不会像 I-CNN 那样减弱。结论:我们的结果表明,机器学习可以促进胸部 X 光片中结核病的检测,并且人口统计学因素可以改善这一过程。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/281f/6352082/e3048ccb35f1/ijerph-16-00250-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验