Suppr超能文献

基于卷积神经网络系统的计算机辅助诊断用于结直肠息肉分类:初步经验

Computer-Aided Diagnosis Based on Convolutional Neural Network System for Colorectal Polyp Classification: Preliminary Experience.

作者信息

Komeda Yoriaki, Handa Hisashi, Watanabe Tomohiro, Nomura Takanobu, Kitahashi Misaki, Sakurai Toshiharu, Okamoto Ayana, Minami Tomohiro, Kono Masashi, Arizumi Tadaaki, Takenaka Mamoru, Hagiwara Satoru, Matsui Shigenaga, Nishida Naoshi, Kashida Hiroshi, Kudo Masatoshi

机构信息

Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka-Sayama, Japan.

出版信息

Oncology. 2017;93 Suppl 1:30-34. doi: 10.1159/000481227. Epub 2017 Dec 20.

Abstract

BACKGROUND AND AIM

Computer-aided diagnosis (CAD) is becoming a next-generation tool for the diagnosis of human disease. CAD for colon polyps has been suggested as a particularly useful tool for trainee colonoscopists, as the use of a CAD system avoids the complications associated with endoscopic resections. In addition to conventional CAD, a convolutional neural network (CNN) system utilizing artificial intelligence (AI) has been developing rapidly over the past 5 years. We attempted to generate a unique CNN-CAD system with an AI function that studied endoscopic images extracted from movies obtained with colonoscopes used in routine examinations. Here, we report our preliminary results of this novel CNN-CAD system for the diagnosis of colon polyps.

METHODS

A total of 1,200 images from cases of colonoscopy performed between January 2010 and December 2016 at Kindai University Hospital were used. These images were extracted from the video of actual endoscopic examinations. Additional video images from 10 cases of unlearned processes were retrospectively assessed in a pilot study. They were simply diagnosed as either an adenomatous or nonadenomatous polyp.

RESULTS

The number of images used by AI to learn to distinguish adenomatous from nonadenomatous was 1,200:600. These images were extracted from the videos of actual endoscopic examinations. The size of each image was adjusted to 256 × 256 pixels. A 10-hold cross-validation was carried out. The accuracy of the 10-hold cross-validation is 0.751, where the accuracy is the ratio of the number of correct answers over the number of all the answers produced by the CNN. The decisions by the CNN were correct in 7 of 10 cases.

CONCLUSION

A CNN-CAD system using routine colonoscopy might be useful for the rapid diagnosis of colorectal polyp classification. Further prospective studies in an in vivo setting are required to confirm the effectiveness of a CNN-CAD system in routine colonoscopy.

摘要

背景与目的

计算机辅助诊断(CAD)正成为人类疾病诊断的下一代工具。结肠息肉的CAD被认为是实习结肠镜检查医师特别有用的工具,因为使用CAD系统可避免与内镜切除相关的并发症。除了传统的CAD,利用人工智能(AI)的卷积神经网络(CNN)系统在过去5年中发展迅速。我们试图生成一个具有AI功能的独特CNN-CAD系统,该系统可研究从常规检查中使用的结肠镜获取的视频中提取的内镜图像。在此,我们报告这种用于诊断结肠息肉的新型CNN-CAD系统的初步结果。

方法

使用了2010年1月至2016年12月在近畿大学医院进行的结肠镜检查病例的共1200张图像。这些图像是从实际内镜检查的视频中提取的。在一项初步研究中,对10例未学习过程的额外视频图像进行了回顾性评估。它们被简单诊断为腺瘤性或非腺瘤性息肉。

结果

AI用于学习区分腺瘤性与非腺瘤性的图像数量为1200:600。这些图像是从实际内镜检查的视频中提取的。每张图像的大小调整为256×256像素。进行了10折交叉验证。10折交叉验证的准确率为0.751,其中准确率是正确答案数量与CNN产生的所有答案数量的比值。CNN的判断在10例中有7例正确。

结论

使用常规结肠镜检查的CNN-CAD系统可能有助于快速诊断结直肠息肉分类。需要在体内环境中进行进一步的前瞻性研究,以确认CNN-CAD系统在常规结肠镜检查中的有效性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验