Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China.
Cell Mol Life Sci. 2019 Apr;76(8):1489-1506. doi: 10.1007/s00018-019-03005-8. Epub 2019 Jan 17.
Endogenous protease tissue-type plasminogen activator (tPA) has highly efficient fibrinolytic activity and its recombinant variants alteplase and tenecteplase are established as highly effective thrombolytic drugs for ischemic stroke. Endogenous tPA is constituted of five functional domains through which it interacts with a variety of substrates, binding proteins and receptors, thus having enzymatic and cytokine-like effects to act on all cell types of the brain. In the past 2 decades, numerous studies have explored the clinical relevance of endogenous tPA in neurological diseases, especially in ischemic stroke. tPA is released from many cells within the brain parenchyma exposed to ischemia conditions in vitro and in vivo, which is believed to control neuronal fate. Some studies proved that tPA could induce blood-brain barrier disruption, neural excitotoxicity and inflammation, while others indicated that tPA also has anti-excitotoxic, neurotrophic and anti-apoptotic effects on neurons. Therefore, more work is needed to elucidate how tPA mediates such opposing functions that may amplify tPA from a therapeutic means into a key therapeutic target in endogenous neuroprotection after stroke. In this review, we summarize the biological characteristics and pleiotropic functions of tPA in the brain. Then we focus on possible hypotheses about why and how endogenous tPA mediates ischemic neuronal death and survival. Finally, we analyze how endogenous tPA affects neuron fate in ischemic stroke in a comprehensive view.
内源性蛋白酶组织型纤溶酶原激活物(tPA)具有高效的纤维蛋白溶解活性,其重组变体阿替普酶和替奈普酶已被确立为治疗缺血性脑卒中的高效溶栓药物。内源性 tPA 由五个功能域组成,通过这些功能域与多种底物、结合蛋白和受体相互作用,从而对大脑的所有细胞类型发挥酶和细胞因子样作用。在过去的 20 年中,许多研究探索了内源性 tPA 在神经疾病中的临床相关性,特别是在缺血性脑卒中方面。tPA 从脑实质中的许多细胞中释放出来,这些细胞在体外和体内都暴露于缺血条件下,这被认为可以控制神经元的命运。一些研究证明 tPA 可以诱导血脑屏障破坏、神经兴奋性毒性和炎症,而另一些研究则表明 tPA 对神经元也具有抗兴奋性毒性、神经营养和抗凋亡作用。因此,需要更多的工作来阐明 tPA 如何介导这种对立的功能,以便将 tPA 从治疗手段转变为脑卒中后内源性神经保护的关键治疗靶点。在这篇综述中,我们总结了 tPA 在大脑中的生物学特性和多效性功能。然后,我们重点讨论了内源性 tPA 介导缺血性神经元死亡和存活的可能假说。最后,我们从综合的角度分析了内源性 tPA 如何影响缺血性脑卒中的神经元命运。