Division of Applied Life Sciences, Graduate School of Agriculture , Kyoto University , Sakyo-ku, Kyoto 606-8502 , Japan.
Institute for Genome Research , University of Tokushima , Kuramotocho-3 , Tokushima 770-8503 , Japan.
Biochemistry. 2019 Feb 26;58(8):1141-1154. doi: 10.1021/acs.biochem.8b01209. Epub 2019 Feb 4.
Voltage-dependent anion channel 1 (VDAC1) situated in the outer mitochondrial membrane regulates the transfer of various metabolites and is a key player in mitochondria-mediated apoptosis. Although many small chemicals that modulate the functions of VDAC1 have been reported to date, most, if not all, of them cannot be regarded as specific reagents due to their interactions with other transporters or enzymes. By screening our chemical libraries using isolated Saccharomyces cerevisiae mitochondria, we found pentenediol (PTD)-type compounds (e.g., PTD-023) as new specific inhibitors of VDAC1. PTD-023 inhibited overall ADP-uptake/ATP-release reactions in isolated mitochondria at a single digit μM level. To identify the binding position of PTDs in VDAC1 by visualizing PTD-bound peptides, we conducted ligand-directed tosyl (LDT) chemistry using the synthetic LDT reagent t-PTD-023 derived from the parent PTD-023 in combination with mutagenesis experiments. t-PTD-023 made a covalent bond predominantly and subsidiarily with nucleophilic Cys210 and Cys130, respectively, indicating that PTDs bind to the region interactive with both residues. Site-directed mutations of hydrogen bond-acceptable Asp139 and Glu152 to Ala, which were selected as potential interactive partners of the critical pentenediol moiety based on the presumed binding model of PTDs in VDAC1, resulted in a decrease in susceptibility against PTD-023. This result strongly suggests that PTDs bind to VDAC1 through a specific hydrogen bond with the two residues. The present study is the first to demonstrate the binding position of specific inhibitors of VDAC1 at the amino acid level.
电压依赖性阴离子通道 1(VDAC1)位于线粒体外膜,调节各种代谢物的转移,是线粒体介导的细胞凋亡的关键因子。尽管迄今为止已经报道了许多调节 VDAC1 功能的小分子化学物质,但由于它们与其他转运体或酶的相互作用,它们中的大多数(如果不是全部的话)都不能被视为特异性试剂。通过用分离的酿酒酵母线粒体筛选我们的化学文库,我们发现戊二烯醇(PTD)型化合物(例如 PTD-023)是 VDAC1 的新型特异性抑制剂。PTD-023 在单个数字 μM 水平上抑制分离的线粒体中的整体 ADP 摄取/ATP 释放反应。为了通过可视化 PTD 结合的肽来确定 PTD 在 VDAC1 中的结合位置,我们使用源自亲本 PTD-023 的合成 LDT 试剂 t-PTD-023 进行配体定向甲苯磺酰基(LDT)化学,同时进行突变实验。t-PTD-023 主要和次要地分别与亲核 Cys210 和 Cys130 形成共价键,表明 PTD 结合到与两个残基相互作用的区域。基于 PTD 在 VDAC1 中的假定结合模型,对氢键可接受的 Asp139 和 Glu152 进行定点突变,将其突变为丙氨酸,这些残基被选为关键戊二烯醇部分的潜在相互作用伙伴,这导致对 PTD-023 的敏感性降低。这一结果强烈表明 PTD 通过与两个残基的特定氢键与 VDAC1 结合。本研究首次在氨基酸水平上证明了 VDAC1 的特异性抑制剂的结合位置。