Max Planck Institute for Solid State Research, 70569 Stuttgart, Germany.
Phys Chem Chem Phys. 2019 Jan 30;21(5):2587-2594. doi: 10.1039/c8cp07463a.
Transition metal atoms stabilised by organic ligands or as oxides exhibit promising catalytic activity for the electrocatalytic reduction and evolution of oxygen. Built-up from earth-abundant elements, they offer affordable alternatives to precious-metal based catalysts for application in fuel cells and electrolysers. For the understanding of a catalyst's activity, insight into its structure on the atomic scale is of highest importance, yet commonly challenging to experimentally access. Here, the structural integrity of a bimetallic iron tetrapyridylporphyrin with co-adsorbed cobalt electrocatalyst on Au(111) is investigated using scanning tunneling microscopy and X-ray absorption spectroscopy. Topographic and spectroscopic characterization reveals structural changes of the molecular coordination network after oxygen reduction, and its decomposition and transformation into catalytically active Co/Fe (oxyhydr)oxide during oxygen evolution. The data establishes a structure-property relationship for the catalyst as a function of electrochemical potential and, in addition, highlights how the reaction direction of electrochemical interconversion between molecular oxygen and hydroxyl anions can have very different effects on the catalyst's structure.
由有机配体稳定的过渡金属原子或作为氧化物,对氧的电催化还原和析出表现出有前景的催化活性。由丰富的元素构成,它们为应用于燃料电池和电解槽的基于贵金属的催化剂提供了经济实惠的替代品。为了了解催化剂的活性,深入了解其原子尺度上的结构至关重要,但通常难以通过实验获得。在这里,使用扫描隧道显微镜和 X 射线吸收光谱研究了在 Au(111) 上共吸附钴电催化剂的双金属铁四吡咯卟啉的结构完整性。形貌和光谱特征揭示了氧还原后分子配位网络的结构变化,以及在氧析出过程中其分解并转化为催化活性的 Co/Fe(氧氢)氧化物。该数据建立了催化剂作为电化学电势函数的结构-性能关系,此外还强调了分子氧和氢氧根阴离子之间电化学相互转换的反应方向如何对催化剂的结构产生非常不同的影响。