Suppr超能文献

DIABLO:一种从多组学分析中识别关键分子驱动因素的综合方法。

DIABLO: an integrative approach for identifying key molecular drivers from multi-omics assays.

作者信息

Singh Amrit, Shannon Casey P, Gautier Benoît, Rohart Florian, Vacher Michaël, Tebbutt Scott J, Lê Cao Kim-Anh

机构信息

Prevention of Organ Failure (PROOF) Centre of Excellence, University of British Columbia, Vancouver, BC, Canada.

The University of Queensland Diamantina Institute, Translational Research Institute, Woolloongabba, Queensland, Australia.

出版信息

Bioinformatics. 2019 Sep 1;35(17):3055-3062. doi: 10.1093/bioinformatics/bty1054.

Abstract

MOTIVATION

In the continuously expanding omics era, novel computational and statistical strategies are needed for data integration and identification of biomarkers and molecular signatures. We present Data Integration Analysis for Biomarker discovery using Latent cOmponents (DIABLO), a multi-omics integrative method that seeks for common information across different data types through the selection of a subset of molecular features, while discriminating between multiple phenotypic groups.

RESULTS

Using simulations and benchmark multi-omics studies, we show that DIABLO identifies features with superior biological relevance compared with existing unsupervised integrative methods, while achieving predictive performance comparable to state-of-the-art supervised approaches. DIABLO is versatile, allowing for modular-based analyses and cross-over study designs. In two case studies, DIABLO identified both known and novel multi-omics biomarkers consisting of mRNAs, miRNAs, CpGs, proteins and metabolites.

AVAILABILITY AND IMPLEMENTATION

DIABLO is implemented in the mixOmics R Bioconductor package with functions for parameters' choice and visualization to assist in the interpretation of the integrative analyses, along with tutorials on http://mixomics.org and in our Bioconductor vignette.

SUPPLEMENTARY INFORMATION

Supplementary data are available at Bioinformatics online.

摘要

动机

在不断扩展的组学时代,需要新的计算和统计策略来进行数据整合以及生物标志物和分子特征的识别。我们提出了使用潜在成分进行生物标志物发现的数据整合分析(DIABLO),这是一种多组学整合方法,通过选择分子特征子集来寻找不同数据类型之间的共同信息,同时区分多个表型组。

结果

通过模拟和基准多组学研究,我们表明,与现有的无监督整合方法相比,DIABLO识别出的特征具有更高的生物学相关性,同时实现了与最先进的监督方法相当的预测性能。DIABLO用途广泛,允许基于模块的分析和交叉研究设计。在两个案例研究中,DIABLO识别出了由mRNA、miRNA、CpG、蛋白质和代谢物组成的已知和新型多组学生物标志物。

可用性和实现方式

DIABLO在mixOmics R Bioconductor包中实现,具有参数选择和可视化功能,以协助解释整合分析,同时在http://mixomics.org和我们的Bioconductor小插图中有教程。

补充信息

补充数据可在《生物信息学》在线获取。

相似文献

1
DIABLO: an integrative approach for identifying key molecular drivers from multi-omics assays.
Bioinformatics. 2019 Sep 1;35(17):3055-3062. doi: 10.1093/bioinformatics/bty1054.
2
mixOmics: An R package for 'omics feature selection and multiple data integration.
PLoS Comput Biol. 2017 Nov 3;13(11):e1005752. doi: 10.1371/journal.pcbi.1005752. eCollection 2017 Nov.
3
timeOmics: an R package for longitudinal multi-omics data integration.
Bioinformatics. 2022 Jan 3;38(2):577-579. doi: 10.1093/bioinformatics/btab664.
4
Machine learning combining multi-omics data and network algorithms identifies adrenocortical carcinoma prognostic biomarkers.
Front Mol Biosci. 2023 Nov 6;10:1258902. doi: 10.3389/fmolb.2023.1258902. eCollection 2023.
5
A latent unknown clustering integrating multi-omics data (LUCID) with phenotypic traits.
Bioinformatics. 2020 Feb 1;36(3):842-850. doi: 10.1093/bioinformatics/btz667.
6
CancerSubtypes: an R/Bioconductor package for molecular cancer subtype identification, validation and visualization.
Bioinformatics. 2017 Oct 1;33(19):3131-3133. doi: 10.1093/bioinformatics/btx378.
7
A supervised Bayesian factor model for the identification of multi-omics signatures.
Bioinformatics. 2024 May 2;40(5). doi: 10.1093/bioinformatics/btae202.
8
PIntMF: Penalized Integrative Matrix Factorization method for multi-omics data.
Bioinformatics. 2022 Jan 27;38(4):900-907. doi: 10.1093/bioinformatics/btab786.
9
Unsupervised multiple kernel learning for heterogeneous data integration.
Bioinformatics. 2018 Mar 15;34(6):1009-1015. doi: 10.1093/bioinformatics/btx682.
10
Identifying interactions in omics data for clinical biomarker discovery using symbolic regression.
Bioinformatics. 2022 Aug 2;38(15):3749-3758. doi: 10.1093/bioinformatics/btac405.

引用本文的文献

1
New insights into the molecular biology of Alzheimer's-like cerebral amyloidosis achieved through multi-omics approaches.
PLoS One. 2025 Sep 3;20(9):e0330859. doi: 10.1371/journal.pone.0330859. eCollection 2025.
5
Specialty grand challenge: how can we use integrative approaches to understand microbial community dynamics?
Front Syst Biol. 2024 Jun 17;4:1432791. doi: 10.3389/fsysb.2024.1432791. eCollection 2024.
6
Presymptomatic microRNA-based biomarker signatures for the prognosis of localized radiation injury in mice.
PLoS One. 2025 Aug 8;20(8):e0329737. doi: 10.1371/journal.pone.0329737. eCollection 2025.
9
Integration of multi-modal measurements identifies critical mechanisms of tuberculosis drug action.
Cell Syst. 2025 Aug 20;16(8):101348. doi: 10.1016/j.cels.2025.101348. Epub 2025 Jul 29.

本文引用的文献

1
Multi-Omics Factor Analysis-a framework for unsupervised integration of multi-omics data sets.
Mol Syst Biol. 2018 Jun 20;14(6):e8124. doi: 10.15252/msb.20178124.
2
Review of Statistical Learning Methods in Integrated Omics Studies (An Integrated Information Science).
Bioinform Biol Insights. 2018 Feb 20;12:1177932218759292. doi: 10.1177/1177932218759292. eCollection 2018.
3
mixOmics: An R package for 'omics feature selection and multiple data integration.
PLoS Comput Biol. 2017 Nov 3;13(11):e1005752. doi: 10.1371/journal.pcbi.1005752. eCollection 2017 Nov.
4
Unsupervised multiple kernel learning for heterogeneous data integration.
Bioinformatics. 2018 Mar 15;34(6):1009-1015. doi: 10.1093/bioinformatics/btx682.
5
More Is Better: Recent Progress in Multi-Omics Data Integration Methods.
Front Genet. 2017 Jun 16;8:84. doi: 10.3389/fgene.2017.00084. eCollection 2017.
7
8
Breast Cancer Prognostics Using Multi-Omics Data.
AMIA Jt Summits Transl Sci Proc. 2016 Jul 20;2016:52-9. eCollection 2016.
9
Dimension reduction techniques for the integrative analysis of multi-omics data.
Brief Bioinform. 2016 Jul;17(4):628-41. doi: 10.1093/bib/bbv108. Epub 2016 Mar 11.
10
Pathway-Based Genomics Prediction using Generalized Elastic Net.
PLoS Comput Biol. 2016 Mar 9;12(3):e1004790. doi: 10.1371/journal.pcbi.1004790. eCollection 2016 Mar.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验