Suppr超能文献

一种支持创建生物动词网络的神经分类方法。

A neural classification method for supporting the creation of BioVerbNet.

作者信息

Chiu Billy, Majewska Olga, Pyysalo Sampo, Wey Laura, Stenius Ulla, Korhonen Anna, Palmer Martha

机构信息

Language Technology Laboratory, MML, University of Cambridge, 9 West Road, Cambridge, CB39DB, UK.

Department of Biochemistry, University of Cambridge, Cambridge, CB2 1QW, UK.

出版信息

J Biomed Semantics. 2019 Jan 18;10(1):2. doi: 10.1186/s13326-018-0193-x.

Abstract

BACKGROUND

VerbNet, an extensive computational verb lexicon for English, has proved useful for supporting a wide range of Natural Language Processing tasks requiring information about the behaviour and meaning of verbs. Biomedical text processing and mining could benefit from a similar resource. We take the first step towards the development of BioVerbNet: A VerbNet specifically aimed at describing verbs in the area of biomedicine. Because VerbNet-style classification is extremely time consuming, we start from a small manual classification of biomedical verbs and apply a state-of-the-art neural representation model, specifically developed for class-based optimization, to expand the classification with new verbs, using all the PubMed abstracts and the full articles in the PubMed Central Open Access subset as data.

RESULTS

Direct evaluation of the resulting classification against BioSimVerb (verb similarity judgement data in biomedicine) shows promising results when representation learning is performed using verb class-based contexts. Human validation by linguists and biologists reveals that the automatically expanded classification is highly accurate. Including novel, valid member verbs and classes, our method can be used to facilitate cost-effective development of BioVerbNet.

CONCLUSION

This work constitutes the first effort on applying a state-of-the-art architecture for neural representation learning to biomedical verb classification. While we discuss future optimization of the method, our promising results suggest that the automatic classification released with this article can be used to readily support application tasks in biomedicine.

摘要

背景

VerbNet是一个用于英语的广泛的计算动词词汇库,已被证明有助于支持各种需要动词行为和意义信息的自然语言处理任务。生物医学文本处理和挖掘可以从类似的资源中受益。我们朝着生物医学VerbNet(BioVerbNet)的开发迈出了第一步:一个专门用于描述生物医学领域动词的VerbNet。由于VerbNet风格的分类极其耗时,我们从对生物医学动词进行小规模手动分类开始,应用一种专门为基于类的优化而开发的先进神经表示模型,以使用所有PubMed摘要和PubMed Central开放获取子集中的全文作为数据,用新动词扩展分类。

结果

当使用基于动词类的上下文进行表示学习时,将所得分类与BioSimVerb(生物医学中的动词相似性判断数据)进行直接评估显示出有希望的结果。语言学家和生物学家的人工验证表明,自动扩展的分类非常准确。包括新颖、有效的成员动词和类,我们的方法可用于促进BioVerbNet的经济高效开发。

结论

这项工作是将先进的神经表示学习架构应用于生物医学动词分类的首次尝试。虽然我们讨论了该方法未来的优化,但我们有希望的结果表明,本文发布的自动分类可用于轻松支持生物医学中的应用任务。

相似文献

4
Componential Analysis of English Verbs.英语动词的成分分析
Front Artif Intell. 2022 May 30;5:780385. doi: 10.3389/frai.2022.780385. eCollection 2022.
6
Approaches to verb subcategorization for biomedicine.生物医学中动词次范畴化方法。
J Biomed Inform. 2013 Apr;46(2):212-27. doi: 10.1016/j.jbi.2012.12.001. Epub 2012 Dec 28.

本文引用的文献

4
Approaches to verb subcategorization for biomedicine.生物医学中动词次范畴化方法。
J Biomed Inform. 2013 Apr;46(2):212-27. doi: 10.1016/j.jbi.2012.12.001. Epub 2012 Dec 28.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验