Eisinger Robert S, Cernera Stephanie, Gittis Aryn, Gunduz Aysegul, Okun Michael S
Department of Neuroscience, University of Florida, Gainesville, FL, USA.
Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA.
Parkinsonism Relat Disord. 2019 Feb;59:9-20. doi: 10.1016/j.parkreldis.2019.01.009. Epub 2019 Jan 9.
Drawing on the seminal work of DeLong, Albin, and Young, we have now entered an era of basal ganglia neuromodulation. Understanding, re-evaluating, and leveraging the lessons learned from neuromodulation will be crucial to facilitate an increased and improved application of neuromodulation in human disease.
We will focus on deep brain stimulation (DBS) - the most common form of basal ganglia neuromodulation - however, similar principles can apply to other neuromodulation modalities. We start with a brief review of DBS for Parkinson's disease, essential tremor, dystonia, and Tourette syndrome. We then review hallmark studies on basal ganglia circuits and electrophysiology resulting from decades of experience in neuromodulation. The organization and content of this paper follow Dr. Okun's Lecture from the 2018 Parkinsonism and Related Disorders World Congress.
Information gained from neuromodulation has led to an expansion of the basal ganglia rate model, an enhanced understanding of nuclei dynamics, an emerging focus on pathological oscillations, a revision of the tripartite division of the basal ganglia, and a redirected focus toward individualized symptom-specific stimulation. Though there have been many limitations of the basal ganglia "box model," the construct provided the necessary foundation to advance the field. We now understand that information in the basal ganglia is encoded through complex neural responses that can be reliably measured and used to infer disease states for clinical translation.
Our deepened understanding of basal ganglia physiology will drive new neuromodulation strategies such as adaptive DBS or cell-specific neuromodulation through the use of optogenetics.
借鉴德隆、阿尔宾和杨的开创性工作,我们现已进入基底神经节神经调节的时代。理解、重新评估并利用从神经调节中学到的经验教训,对于促进神经调节在人类疾病中的更多应用及改进应用效果至关重要。
我们将重点关注深部脑刺激(DBS)——基底神经节神经调节最常见的形式——然而,类似的原理也适用于其他神经调节方式。我们首先简要回顾DBS在帕金森病、特发性震颤、肌张力障碍和图雷特综合征中的应用。然后,我们回顾数十年来神经调节经验所产生的关于基底神经节回路和电生理学的标志性研究。本文的组织和内容遵循奥昆博士在2018年帕金森病及相关疾病世界大会上的演讲。
从神经调节中获得的信息导致基底神经节速率模型的扩展、对核团动态的深入理解、对病理振荡的新关注、基底神经节三方划分的修订以及对个体化症状特异性刺激的重新关注。尽管基底神经节“盒式模型”存在许多局限性,但该结构为推动该领域发展提供了必要的基础。我们现在明白,基底神经节中的信息是通过复杂的神经反应编码的,这些反应可以可靠地测量并用于推断疾病状态以进行临床转化。
我们对基底神经节生理学的深入理解将推动新的神经调节策略,如适应性DBS或通过光遗传学实现的细胞特异性神经调节。