Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL, USA.
Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL, USA.
Mol Cell Endocrinol. 2019 Mar 1;483:97-101. doi: 10.1016/j.mce.2019.01.014. Epub 2019 Jan 16.
Estrogen receptor (ER) is the most important factor in the pathophysiology of breast cancer. Consequently, modulation of ER activity has been exploited to develop drugs against ER + breast cancer, such as tamoxifen, referred to as endocrine therapies. With deeper understanding of ER mechanism of action, posttranslational modifications (PTMs) are increasingly recognized as important in mediating ER activity. Some ER PTMs such as phosphorylation, are studied in the context of ligand-independent ER activity. However, they also play a pivotal role in defining the actions and outcome of the antiestrogen-bound ER. The complexity of these actions is increasing as new PTMs are identified, yet the functional consequences and clinical implications are not fully understood. This review will examine and summarize new emerging mechanistic knowledge and clinical data in breast cancer on how these PTMs affect antiestrogen-ER activity, with an emphasis on phosphorylation of serine 305 (S305). This phosphorylation site represents an integrated hub of oncogenic signaling to modulate ER conformation, dimerization, coregulators, and DNA binding to profoundly reduce sensitivity to endocrine therapy. Consequently, (i) S305 has the potential to become a useful marker of tamoxifen response, and (ii) blocking S305 phosphorylation defines a new therapeutic strategy to overcome tamoxifen resistance in breast cancer.
雌激素受体 (ER) 是乳腺癌病理生理学中最重要的因素。因此,人们利用 ER 活性的调节来开发针对 ER+乳腺癌的药物,例如他莫昔芬,称为内分泌治疗。随着对 ER 作用机制的深入了解,翻译后修饰 (PTM) 越来越被认为在调节 ER 活性中起着重要作用。一些 ER PTM,如磷酸化,在配体非依赖性 ER 活性的背景下进行研究。然而,它们在定义结合抗雌激素的 ER 的作用和结果方面也起着关键作用。随着新的 PTM 被鉴定出来,这些作用的复杂性正在增加,但功能后果和临床意义尚未完全了解。这篇综述将检查和总结乳腺癌中关于这些 PTMs 如何影响抗雌激素-ER 活性的新出现的机制知识和临床数据,重点关注丝氨酸 305 (S305) 的磷酸化。该磷酸化位点代表了一种整合的致癌信号枢纽,可调节 ER 构象、二聚化、共激活因子和 DNA 结合,从而极大地降低对内分泌治疗的敏感性。因此,(i) S305 有可能成为预测他莫昔芬反应的有用标志物,(ii) 阻断 S305 磷酸化定义了一种新的治疗策略,以克服乳腺癌中对他莫昔芬的耐药性。