Suppr超能文献

宏观电子系统的波函数。

Wavefunctions of macroscopic electron systems.

机构信息

Max-Planck-Institut für Physik Komplexer Systeme, Nöthnitzer Straße 38, 01187 Dresden, Germany.

出版信息

J Chem Phys. 2019 Jan 21;150(3):030901. doi: 10.1063/1.5050329.

Abstract

Wavefunctions for large electron numbers N are plagued by the Exponential Wall Problem (EWP), i.e., an exponential increase in the dimensions of Hilbert space with N. Therefore, they lose their meaning for macroscopic systems, a point stressed, in particular, by Kohn. The EWP has to be resolved in order to provide a solid basis for wavefunction based electronic structure calculations of macroscopic systems, e.g., solids. The origin of the EWP is the multiplicative property of wavefunctions when independent subsystems are considered. Therefore, it can only be avoided when wavefunctions are formulated so that they are additive instead, in particular, when matrix elements involving them are calculated. We describe how this is done for the ground state of a macroscopic electron system. Going over from a multiplicative to an additive quantity requires taking a logarithm. Here it implies going over from Hilbert space to the operator- or Liouville space with a metric based on cumulants. The operators which define the ground-state wavefunction generate fluctuations from a mean-field state. The latter does not suffer from an EWP and therefore may serve as a vacuum state. The fluctuations have to be connected like the ones caused by pair interactions in a classical gas when the free energy is calculated (Meyer's cluster expansion). This fixes the metric in Liouville space. The scheme presented here provides a solid basis for electronic structure calculations for the ground state of solids. In fact, its applicability has already been proven. We discuss also matrix product states, which have been applied to one-dimensional systems with results of high precision. Although these states are formulated in Hilbert space, they are processed by using operators in Liouville space. We show that they fit into the general formalism described above.

摘要

对于较大的电子数 N,波函数受到指数壁问题(EWP)的困扰,即 Hilbert 空间的维数随 N 呈指数增长。因此,它们对于宏观系统失去了意义,这一点尤其被 Kohn 强调。为了为宏观系统(例如固体)的基于波函数的电子结构计算提供坚实的基础,必须解决 EWP。EWP 的起源是当考虑独立子系统时波函数的乘法性质。因此,只有当波函数被制定为可加性,而不是乘法性时,才能避免 EWP,特别是在计算涉及它们的矩阵元时。我们描述了如何为宏观电子系统的基态做到这一点。从乘法到加法量的转变需要取对数。在这里,它意味着从 Hilbert 空间过渡到基于累积量的算子或刘维尔空间。定义基态波函数的算子会从平均场状态产生波动。后者不受 EWP 的影响,因此可以用作真空态。波动必须像在计算自由能时经典气体中的对相互作用引起的波动一样连接(Meyer 的团簇展开)。这确定了刘维尔空间中的度量。这里提出的方案为固体的基态电子结构计算提供了坚实的基础。事实上,它的适用性已经得到了证明。我们还讨论了矩阵乘积态,它们已应用于一维系统,并取得了高精度的结果。尽管这些状态是在 Hilbert 空间中制定的,但它们是通过在刘维尔空间中使用算子来处理的。我们表明它们符合上述一般形式。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验