Max-Planck-Institut für Physik komplexer Systeme, Nöthnitzer Straße 38, 01187 Dresden, Germany.
Institut für Theoretische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70550 Stuttgart, Germany.
J Chem Phys. 2017 May 21;146(19):194107. doi: 10.1063/1.4983207.
An alternative to the density functional theory is the use of wavefunction based electronic structure calculations for solids. In order to perform them, the Exponential Wall (EW) problem has to be resolved. It is caused by an exponential increase of the number of configurations with increasing electron number N. There are different routes one may follow. One is to characterize a many-electron wavefunction by a vector in Liouville space with a cumulant metric rather than in Hilbert space. This removes the EW problem. Another is to model the solid by an impurity or fragment embedded in a bath which is treated at a much lower level than the former. This is the case in the Density Matrix Embedding Theory (DMET) or the Density Embedding Theory (DET). The latter two are closely related to a Schmidt decomposition of a system and to the determination of the associated entanglement. We show here the connection between the two approaches. It turns out that the DMET (or DET) has an identical active space as a previously used Local Ansatz, based on a projection and partitioning approach. Yet, the EW problem is resolved differently in the two cases. By studying a H ring, these differences are analyzed with the help of the method of increments.
另一种替代密度泛函理论的方法是使用基于波函数的电子结构计算来研究固体。为了进行这些计算,必须解决指数壁(EW)问题。该问题是由于电子数 N 增加时,构型数量呈指数级增长而引起的。人们可以遵循不同的途径。一种方法是用刘维尔空间中的矢量来描述多电子波函数,而不是用希尔伯特空间来描述。这样可以消除 EW 问题。另一种方法是将固体建模为嵌入在浴中的杂质或碎片,浴的处理水平远低于前者。这就是密度矩阵嵌入理论(DMET)或密度嵌入理论(DET)的情况。后两种方法与系统的施密特分解和确定相关的纠缠密切相关。我们在这里展示了这两种方法之间的联系。事实证明,DMET(或 DET)的活动空间与之前使用的基于投影和分区方法的局部假设相同。然而,在这两种情况下,EW 问题的解决方式不同。通过研究 H 环,借助增量法对这些差异进行了分析。