Suppr超能文献

量子电子掺杂实现原子级控制的“电荷工程”半导体纳米晶体。

Quantized Electronic Doping towards Atomically Controlled "Charge-Engineered" Semiconductor Nanocrystals.

机构信息

Glass to Power SpA, Via Fortunato Zeni 8 , I-38068 Rovereto, , Italy.

International Iberian Nanotechnology Laboratory, Nanophotonics Department , Ultrafast Bio- and Nanophotonics Group , Avenida Mestre José Veiga s/n , 4715-330 Braga , Portugal.

出版信息

Nano Lett. 2019 Feb 13;19(2):1307-1317. doi: 10.1021/acs.nanolett.8b04904. Epub 2019 Jan 29.

Abstract

"Charge engineering" of semiconductor nanocrystals (NCs) through so-called electronic impurity doping is a long-standing challenge in colloidal chemistry and holds promise for ground-breaking advancements in many optoelectronic, photonic, and spin-based nanotechnologies. To date, our knowledge is limited to a few paradigmatic studies on a small number of model compounds and doping conditions, with important electronic dopants still unexplored in nanoscale systems. Equally importantly, fine-tuning of charge engineered NCs is hampered by the statistical limitations of traditional approaches. The resulting intrinsic doping inhomogeneity restricts fundamental studies to statistically averaged behaviors and complicates the realization of advanced device concepts based on their advantageous functionalities. Here we aim to address these issues by realizing the first example of II-VI NCs electronically doped with an exact number of heterovalent gold atoms, a known p-type acceptor impurity in bulk chalcogenides. Single-dopant accuracy across entire NC ensembles is obtained through a novel non-injection synthesis employing ligand-exchanged gold clusters as "quantized" dopant sources to seed the nucleation of CdSe NCs in organic media. Structural, spectroscopic, and magneto-optical investigations trace a comprehensive picture of the physical processes resulting from the exact doping level of the NCs. Gold atoms, doped here for the first time into II-VI NCs, are found to incorporate as nonmagnetic Au species activating intense size-tunable intragap photoluminescence and artificially offsetting the hole occupancy of valence band states. Fundamentally, the transient conversion of Au to paramagnetic Au (5d configuration) under optical excitation results in strong photoinduced magnetism and diluted magnetic semiconductor behavior revealing the contribution of individual paramagnetic impurities to the macroscopic magnetism of the NCs. Altogether, our results demonstrate a new chemical approach toward NCs with physical functionalities tailored to the single impurity level and offer a versatile platform for future investigations and device exploitation of individual and collective impurity processes in quantum confined structures.

摘要

通过所谓的电子杂质掺杂对半导体纳米晶体(NCs)进行“电荷工程”是胶体化学中长期存在的挑战,有望在许多光电、光子和基于自旋的纳米技术中取得突破性进展。迄今为止,我们的知识仅限于少数几个模型化合物和掺杂条件的范例研究,而在纳米系统中仍然没有探索到重要的电子掺杂剂。同样重要的是,电荷工程化 NCs 的精细调整受到传统方法的统计限制。由此产生的固有掺杂不均匀性限制了对基于其有利功能的先进器件概念的基础研究,使其只能达到统计平均值。在这里,我们旨在通过实现第一个具有精确数量的异价金原子的 II-VI NCs 的电子掺杂的实例来解决这些问题,这是体半导体中已知的 p 型受主杂质。通过使用配体交换的金簇作为“量化”掺杂源的新型非注入合成,在整个 NC 集合中获得了单个掺杂剂的准确性,从而在有机介质中引发 CdSe NC 的成核。结构、光谱和磁光研究追踪了 NC 精确掺杂水平导致的物理过程的综合情况。首次发现掺杂到 II-VI NCs 中的金原子作为非磁性 Au 物种掺入,从而激活了强烈的尺寸可调的带隙内光致发光,并人为地抵消了价带态的空穴占有率。从根本上讲,Au 在光激发下向顺磁 Au(5d 构型)的瞬时转化导致强光致磁和稀磁半导体行为,揭示了单个顺磁杂质对 NC 宏观磁体的贡献。总的来说,我们的结果展示了一种新的化学方法,用于制备具有针对单个杂质水平定制的物理功能的 NCs,并为未来在量子限制结构中对单个和集体杂质过程的研究和器件开发提供了一个通用平台。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验