Suppr超能文献

基于样本量的漏斗图在荟萃分析中的图形增强。

Graphical augmentations to sample-size-based funnel plot in meta-analysis.

机构信息

Department of Statistics, Florida State University, Tallahassee, Florida.

出版信息

Res Synth Methods. 2019 Sep;10(3):376-388. doi: 10.1002/jrsm.1340. Epub 2019 Feb 7.

Abstract

Assessing publication bias is a critical procedure in meta-analyses for rating the synthesized overall evidence. Because statistical tests for publication bias are usually not powerful and only give P values that inform either the presence or absence of the bias, examining the asymmetry of funnel plots has been popular to investigate potentially missing studies and the direction of the bias. Most funnel plots present treatment effects against their standard errors, and the contours depicting studies' significance levels have been used in the plots to distinguish publication bias from other factors (such as heterogeneity and subgroup effects) that may cause the plots' asymmetry. However, treatment effects and their standard errors are frequently associated even if no publication bias exists (eg, both variables depend on the four data cells in a 2 × 2 table for the odds ratio), so standard-error-based funnel plots may lead to false positive conclusions when such association may not be negligible. In addition, the missingness of studies may relate to their sample sizes besides P values (which are partly determined by standard errors); studies with more samples are more likely published. Therefore, funnel plots based on sample sizes can be an alternative tool. However, the contours for standard-error-based funnel plots cannot be directly applied to sample-size-based ones. This article introduces contours for sample-size-based funnel plots of various effect sizes, which may help meta-analysts properly interpret such plots' asymmetry. We provide five examples to illustrate the use of the proposed contours.

摘要

评估发表偏倚是荟萃分析中对综合总体证据进行评级的关键步骤。由于发表偏倚的统计检验通常不够强大,只能提供存在或不存在偏倚的 P 值,因此检查漏斗图的不对称性已成为研究潜在缺失研究和偏倚方向的热门方法。大多数漏斗图显示治疗效果与其标准误差相对应,并且在图中使用描绘研究显著性水平的轮廓来区分发表偏倚与可能导致图不对称的其他因素(如异质性和亚组效应)。然而,即使不存在发表偏倚,治疗效果及其标准误差也经常相关(例如,两者变量都取决于比值比的 2×2 表中的四个数据单元格),因此,当这种关联可能不可忽略时,基于标准误差的漏斗图可能会导致假阳性结论。此外,研究的缺失可能与它们的样本量有关,而不仅仅是 P 值(这部分由标准误差决定);样本量较大的研究更有可能发表。因此,基于样本量的漏斗图可以作为替代工具。然而,基于标准误差的漏斗图的轮廓不能直接应用于基于样本量的漏斗图。本文介绍了各种效应大小的基于样本量的漏斗图的轮廓,这可能有助于荟萃分析人员正确解释这些图的不对称性。我们提供了五个示例来说明所提出的轮廓的使用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/38f1/6642847/4cea6cb2dfcd/nihms-1007638-f0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验