Suppr超能文献

七种用于估计汇总优势比的荟萃分析随机效应模型的比较。

A comparison of seven random-effects models for meta-analyses that estimate the summary odds ratio.

机构信息

MRC Biostatistics Unit, Institute of Public Health, University of Cambridge, Cambridge, UK.

Medical Statistics and Bioinformatics, Leiden University Medical Center, Leiden, Netherlands.

出版信息

Stat Med. 2018 Mar 30;37(7):1059-1085. doi: 10.1002/sim.7588. Epub 2018 Jan 8.

Abstract

Comparative trials that report binary outcome data are commonly pooled in systematic reviews and meta-analyses. This type of data can be presented as a series of 2-by-2 tables. The pooled odds ratio is often presented as the outcome of primary interest in the resulting meta-analysis. We examine the use of 7 models for random-effects meta-analyses that have been proposed for this purpose. The first of these models is the conventional one that uses normal within-study approximations and a 2-stage approach. The other models are generalised linear mixed models that perform the analysis in 1 stage and have the potential to provide more accurate inference. We explore the implications of using these 7 models in the context of a Cochrane Review, and we also perform a simulation study. We conclude that generalised linear mixed models can result in better statistical inference than the conventional 2-stage approach but also that this type of model presents issues and difficulties. These challenges include more demanding numerical methods and determining the best way to model study specific baseline risks. One possible approach for analysts is to specify a primary model prior to performing the systematic review but also to present the results using other models in a sensitivity analysis. Only one of the models that we investigate is found to perform poorly so that any of the other models could be considered for either the primary or the sensitivity analysis.

摘要

比较试验报告二项结果数据通常在系统评价和荟萃分析中汇总。这种类型的数据可以表示为一系列 2x2 表。汇总的优势比通常是荟萃分析中主要关注的结果。我们检查了为此目的提出的 7 种用于随机效应荟萃分析的模型的使用情况。这些模型中的第一个是传统模型,它使用常规的研究内近似和两阶段方法。其他模型是广义线性混合模型,它们在 1 个阶段中进行分析,并有潜力提供更准确的推断。我们在 Cochrane 综述的背景下探讨了使用这 7 种模型的意义,我们还进行了一项模拟研究。我们的结论是,广义线性混合模型可以比传统的两阶段方法产生更好的统计推断,但也存在一些问题和困难。这些挑战包括更严格的数值方法和确定对特定研究基线风险进行建模的最佳方法。分析人员的一种可能方法是在进行系统评价之前指定主要模型,但也要使用其他模型在敏感性分析中呈现结果。我们研究的模型中只有一个表现不佳,因此可以考虑任何其他模型作为主要或敏感性分析的选择。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3dbd/5873284/eca077308607/SIM-37-1059-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验